Block matrices and their determinant #
This file defines a predicate Matrix.BlockTriangular
saying a matrix
is block triangular, and proves the value of the determinant for various
matrices built out of blocks.
Main definitions #
Matrix.BlockTriangular
expresses that ano
byo
matrix is block triangular, if the rows and columns are ordered according to some orderb : o → α
Main results #
Matrix.det_of_blockTriangular
: the determinant of a block triangular matrix is equal to the product of the determinants of all the blocksMatrix.det_of_upperTriangular
andMatrix.det_of_lowerTriangular
: the determinant of a triangular matrix is the product of the entries along the diagonal
Tags #
matrix, diagonal, det, block triangular
def
Matrix.BlockTriangular
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
[LT α]
(M : Matrix m m R)
(b : m → α)
:
Let b
map rows and columns of a square matrix M
to blocks indexed by α
s. Then
BlockTriangular M n b
says the matrix is block triangular.
Instances For
theorem
Matrix.blockTriangular_diagonal
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{b : m → α}
[Preorder α]
[DecidableEq m]
(d : m → R)
:
(Matrix.diagonal d).BlockTriangular b
theorem
Matrix.blockTriangular_blockDiagonal'
{α : Type u_1}
{m' : α → Type u_6}
{R : Type v}
[CommRing R]
[Preorder α]
[DecidableEq α]
(d : (i : α) → Matrix (m' i) (m' i) R)
:
(Matrix.blockDiagonal' d).BlockTriangular Sigma.fst
theorem
Matrix.blockTriangular_blockDiagonal
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
[Preorder α]
[DecidableEq α]
(d : α → Matrix m m R)
:
(Matrix.blockDiagonal d).BlockTriangular Prod.snd
theorem
Matrix.blockTriangular_one
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{b : m → α}
[Preorder α]
[DecidableEq m]
:
theorem
Matrix.blockTriangular_stdBasisMatrix
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{b : m → α}
[Preorder α]
[DecidableEq m]
{i : m}
{j : m}
(hij : b i ≤ b j)
(c : R)
:
(Matrix.stdBasisMatrix i j c).BlockTriangular b
theorem
Matrix.blockTriangular_stdBasisMatrix'
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{b : m → α}
[Preorder α]
[DecidableEq m]
{i : m}
{j : m}
(hij : b j ≤ b i)
(c : R)
:
(Matrix.stdBasisMatrix i j c).BlockTriangular (⇑OrderDual.toDual ∘ b)
theorem
Matrix.blockTriangular_transvection
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{b : m → α}
[Preorder α]
[DecidableEq m]
{i : m}
{j : m}
(hij : b i ≤ b j)
(c : R)
:
(Matrix.transvection i j c).BlockTriangular b
theorem
Matrix.blockTriangular_transvection'
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{b : m → α}
[Preorder α]
[DecidableEq m]
{i : m}
{j : m}
(hij : b j ≤ b i)
(c : R)
:
(Matrix.transvection i j c).BlockTriangular (⇑OrderDual.toDual ∘ b)
theorem
Matrix.upper_two_blockTriangular
{α : Type u_1}
{m : Type u_3}
{n : Type u_4}
{R : Type v}
[CommRing R]
[Preorder α]
(A : Matrix m m R)
(B : Matrix m n R)
(D : Matrix n n R)
{a : α}
{b : α}
(hab : a < b)
:
(Matrix.fromBlocks A B 0 D).BlockTriangular (Sum.elim (fun (x : m) => a) fun (x : n) => b)
Determinant #
theorem
Matrix.equiv_block_det
{m : Type u_3}
{R : Type v}
[CommRing R]
[DecidableEq m]
[Fintype m]
(M : Matrix m m R)
{p : m → Prop}
{q : m → Prop}
[DecidablePred p]
[DecidablePred q]
(e : ∀ (x : m), q x ↔ p x)
:
(M.toSquareBlockProp p).det = (M.toSquareBlockProp q).det
theorem
Matrix.det_toSquareBlock_id
{m : Type u_3}
{R : Type v}
[CommRing R]
[DecidableEq m]
[Fintype m]
(M : Matrix m m R)
(i : m)
:
(M.toSquareBlock id i).det = M i i
theorem
Matrix.det_toBlock
{m : Type u_3}
{R : Type v}
[CommRing R]
[DecidableEq m]
[Fintype m]
(M : Matrix m m R)
(p : m → Prop)
[DecidablePred p]
:
theorem
Matrix.twoBlockTriangular_det
{m : Type u_3}
{R : Type v}
[CommRing R]
[DecidableEq m]
[Fintype m]
(M : Matrix m m R)
(p : m → Prop)
[DecidablePred p]
(h : ∀ (i : m), ¬p i → ∀ (j : m), p j → M i j = 0)
:
theorem
Matrix.twoBlockTriangular_det'
{m : Type u_3}
{R : Type v}
[CommRing R]
[DecidableEq m]
[Fintype m]
(M : Matrix m m R)
(p : m → Prop)
[DecidablePred p]
(h : ∀ (i : m), p i → ∀ (j : m), ¬p j → M i j = 0)
:
theorem
Matrix.BlockTriangular.det
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[DecidableEq α]
[LinearOrder α]
(hM : M.BlockTriangular b)
:
M.det = ∏ a ∈ Finset.image b Finset.univ, (M.toSquareBlock b a).det
theorem
Matrix.BlockTriangular.det_fintype
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[DecidableEq α]
[Fintype α]
[LinearOrder α]
(h : M.BlockTriangular b)
:
M.det = ∏ k : α, (M.toSquareBlock b k).det
theorem
Matrix.det_of_upperTriangular
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
[DecidableEq m]
[Fintype m]
[LinearOrder m]
(h : M.BlockTriangular id)
:
M.det = ∏ i : m, M i i
theorem
Matrix.det_of_lowerTriangular
{m : Type u_3}
{R : Type v}
[CommRing R]
[DecidableEq m]
[Fintype m]
[LinearOrder m]
(M : Matrix m m R)
(h : M.BlockTriangular ⇑OrderDual.toDual)
:
M.det = ∏ i : m, M i i
theorem
Matrix.matrixOfPolynomials_blockTriangular
{R : Type v}
[CommRing R]
{n : ℕ}
(p : Fin n → Polynomial R)
(h_deg : ∀ (i : Fin n), (p i).natDegree ≤ ↑i)
:
(Matrix.of fun (i j : Fin n) => (p j).coeff ↑i).BlockTriangular id
Invertible #
theorem
Matrix.BlockTriangular.toBlock_inverse_mul_toBlock_eq_one
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[LinearOrder α]
[Invertible M]
(hM : M.BlockTriangular b)
(k : α)
:
theorem
Matrix.BlockTriangular.inv_toBlock
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[LinearOrder α]
[Invertible M]
(hM : M.BlockTriangular b)
(k : α)
:
The inverse of an upper-left subblock of a block-triangular matrix M
is the upper-left
subblock of M⁻¹
.
def
Matrix.BlockTriangular.invertibleToBlock
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[LinearOrder α]
[Invertible M]
(hM : M.BlockTriangular b)
(k : α)
:
Invertible (M.toBlock (fun (i : m) => b i < k) fun (i : m) => b i < k)
An upper-left subblock of an invertible block-triangular matrix is invertible.
Equations
Instances For
theorem
Matrix.toBlock_inverse_eq_zero
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[LinearOrder α]
[Invertible M]
(hM : M.BlockTriangular b)
(k : α)
:
A lower-left subblock of the inverse of a block-triangular matrix is zero. This is a first step
towards BlockTriangular.inv_toBlock
below.
theorem
Matrix.blockTriangular_inv_of_blockTriangular
{α : Type u_1}
{m : Type u_3}
{R : Type v}
[CommRing R]
{M : Matrix m m R}
{b : m → α}
[DecidableEq m]
[Fintype m]
[LinearOrder α]
[Invertible M]
(hM : M.BlockTriangular b)
:
M⁻¹.BlockTriangular b
The inverse of a block-triangular matrix is block-triangular.