Norms on free modules over principal ideal domains #
theorem
associated_norm_prod_smith
{R : Type u_1}
{S : Type u_2}
{ι : Type u_3}
[CommRing R]
[IsDomain R]
[IsPrincipalIdealRing R]
[CommRing S]
[IsDomain S]
[Algebra R S]
[Fintype ι]
(b : Basis ι R S)
{f : S}
(hf : f ≠ 0)
:
Associated ((Algebra.norm R) f) (∏ i : ι, Ideal.smithCoeffs b (Ideal.span {f}) ⋯ i)
For a nonzero element f
in an algebra S
over a principal ideal domain R
that is finite and
free as an R
-module, the norm of f
relative to R
is associated to the product of the Smith
coefficients of the ideal generated by f
.
instance
instFiniteDimensionalQuotientPolynomialIdealSpanSingletonSetSmithCoeffs
{S : Type u_2}
{ι : Type u_3}
[CommRing S]
[IsDomain S]
{F : Type u_4}
[Field F]
[Algebra (Polynomial F) S]
[Finite ι]
(b : Basis ι (Polynomial F) S)
{I : Ideal S}
(hI : I ≠ ⊥)
(i : ι)
:
FiniteDimensional F (Polynomial F ⧸ Ideal.span {Ideal.smithCoeffs b I hI i})
Equations
- ⋯ = ⋯
theorem
finrank_quotient_span_eq_natDegree_norm
{S : Type u_2}
{ι : Type u_3}
[CommRing S]
[IsDomain S]
{F : Type u_4}
[Field F]
[Algebra (Polynomial F) S]
[Finite ι]
[Algebra F S]
[IsScalarTower F (Polynomial F) S]
(b : Basis ι (Polynomial F) S)
{f : S}
(hf : f ≠ 0)
:
Module.finrank F (S ⧸ Ideal.span {f}) = ((Algebra.norm (Polynomial F)) f).natDegree
For a nonzero element f
in a F[X]
-module S
, the dimension of $S/\langle f \rangle$ as an
F
-vector space is the degree of the norm of f
relative to F[X]
.