Eigenvalues, Eigenvectors and Spectrum for Matrices #
This file collects results about eigenvectors, eigenvalues and spectrum specific to matrices over a nontrivial commutative ring, nontrivial commutative ring without zero divisors, or field.
Tags #
eigenspace, eigenvector, eigenvalue, spectrum, matrix
theorem
hasEigenvector_toLin_diagonal
{R : Type u_1}
{n : Type u_2}
{M : Type u_3}
[DecidableEq n]
[Fintype n]
[CommRing R]
[Nontrivial R]
[AddCommGroup M]
[Module R M]
(d : n → R)
(i : n)
(b : Basis n R M)
:
Module.End.HasEigenvector ((Matrix.toLin b b) (Matrix.diagonal d)) (d i) (b i)
Basis vectors are eigenvectors of associated diagonal linear operator.
theorem
hasEigenvector_toLin'_diagonal
{R : Type u_1}
{n : Type u_2}
[DecidableEq n]
[Fintype n]
[CommRing R]
[Nontrivial R]
(d : n → R)
(i : n)
:
Module.End.HasEigenvector (Matrix.toLin' (Matrix.diagonal d)) (d i) ((Pi.basisFun R n) i)
Standard basis vectors are eigenvectors of any associated diagonal linear operator.
theorem
hasEigenvalue_toLin_diagonal_iff
{R : Type u_1}
{n : Type u_2}
{M : Type u_3}
[DecidableEq n]
[Fintype n]
[CommRing R]
[Nontrivial R]
[AddCommGroup M]
[Module R M]
(d : n → R)
{μ : R}
[NoZeroSMulDivisors R M]
(b : Basis n R M)
:
Module.End.HasEigenvalue ((Matrix.toLin b b) (Matrix.diagonal d)) μ ↔ ∃ (i : n), d i = μ
Eigenvalues of a diagonal linear operator are the diagonal entries.
theorem
hasEigenvalue_toLin'_diagonal_iff
{R : Type u_1}
{n : Type u_2}
[DecidableEq n]
[Fintype n]
[CommRing R]
[Nontrivial R]
[NoZeroDivisors R]
(d : n → R)
{μ : R}
:
Module.End.HasEigenvalue (Matrix.toLin' (Matrix.diagonal d)) μ ↔ ∃ (i : n), d i = μ
Eigenvalues of a diagonal linear operator with respect to standard basis are the diagonal entries.
theorem
spectrum_diagonal
{R : Type u_1}
{n : Type u_2}
[DecidableEq n]
[Fintype n]
[Field R]
(d : n → R)
:
spectrum R (Matrix.diagonal d) = Set.range d
The spectrum of the diagonal operator is the range of the diagonal viewed as a function.