Documentation

Mathlib.LinearAlgebra.Coevaluation

The coevaluation map on finite dimensional vector spaces #

Given a finite dimensional vector space V over a field K this describes the canonical linear map from K to V ⊗ Dual K V which corresponds to the identity function on V.

Tags #

coevaluation, dual module, tensor product

Future work #

def coevaluation (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :

The coevaluation map is a linear map from a field K to a finite dimensional vector space V.

Equations
Instances For
    theorem coevaluation_apply_one (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :
    (coevaluation K V) 1 = let bV := Basis.ofVectorSpace K V; i : (Basis.ofVectorSpaceIndex K V), bV i ⊗ₜ[K] bV.coord i

    This lemma corresponds to one of the coherence laws for duals in rigid categories, see CategoryTheory.Monoidal.Rigid.

    theorem contractLeft_assoc_coevaluation' (K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] :
    LinearMap.lTensor V (contractLeft K V) ∘ₗ (TensorProduct.assoc K V (Module.Dual K V) V) ∘ₗ LinearMap.rTensor V (coevaluation K V) = (TensorProduct.rid K V).symm ∘ₗ (TensorProduct.lid K V)

    This lemma corresponds to one of the coherence laws for duals in rigid categories, see CategoryTheory.Monoidal.Rigid.