Category-theoretic interpretations of CliffordAlgebra
#
Main definitions #
QuadraticModuleCat.cliffordAlgebra
: the functor from quadratic modules to algebras
@[simp]
theorem
QuadraticModuleCat.cliffordAlgebra_obj_carrier
{R : Type u}
[CommRing R]
(M : QuadraticModuleCat R)
:
↑(QuadraticModuleCat.cliffordAlgebra.obj M) = CliffordAlgebra M.form
@[simp]
theorem
QuadraticModuleCat.cliffordAlgebra_map
{R : Type u}
[CommRing R]
{_M : QuadraticModuleCat R}
{_N : QuadraticModuleCat R}
(f : _M ⟶ _N)
:
QuadraticModuleCat.cliffordAlgebra.map f = CliffordAlgebra.map f.toIsometry
The "clifford algebra" functor, sending a quadratic R
-module V
to the clifford algebra on
V
.
This is CliffordAlgebra.map
through the lens of category theory.
Equations
- One or more equations did not get rendered due to their size.