Some lemmas pertaining to the action of ConjAct (Perm α)
on Perm α
#
We prove some lemmas related to the action of ConjAct (Perm α)
on Perm α
:
Let α
be a decidable fintype.
conj_support_eq
relates the support ofk • g
with that ofg
cycleFactorsFinset_conj_eq
,mem_cycleFactorsFinset_conj'
andcycleFactorsFinset_conj
relate the set of cycles ofg
,g.cycleFactorsFinset
, with that fork • g
theorem
Equiv.Perm.mem_conj_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(k : ConjAct (Equiv.Perm α))
(g : Equiv.Perm α)
(a : α)
:
a : α
belongs to the support of k • g
iff
k⁻¹ * a
belongs to the support of g
theorem
Equiv.Perm.cycleFactorsFinset_conj
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(g : Equiv.Perm α)
(k : Equiv.Perm α)
:
(ConjAct.toConjAct k • g).cycleFactorsFinset = Finset.map (MulAut.conj k).toEmbedding g.cycleFactorsFinset
@[simp]
theorem
Equiv.Perm.mem_cycleFactorsFinset_conj'
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(k : ConjAct (Equiv.Perm α))
(g : Equiv.Perm α)
(c : Equiv.Perm α)
:
A permutation c
is a cycle of g
iff k • c
is a cycle of k • g
theorem
Equiv.Perm.cycleFactorsFinset_conj_eq
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(k : ConjAct (Equiv.Perm α))
(g : Equiv.Perm α)
: