Documentation

Mathlib.GroupTheory.Perm.ConjAct

Some lemmas pertaining to the action of ConjAct (Perm α) on Perm α #

We prove some lemmas related to the action of ConjAct (Perm α) on Perm α:

Let α be a decidable fintype.

theorem Equiv.Perm.mem_conj_support {α : Type u_1} [DecidableEq α] [Fintype α] (k : ConjAct (Equiv.Perm α)) (g : Equiv.Perm α) (a : α) :
a (k g).support (ConjAct.ofConjAct k⁻¹) a g.support

a : α belongs to the support of k • g iff k⁻¹ * a belongs to the support of g

theorem Equiv.Perm.cycleFactorsFinset_conj {α : Type u_1} [DecidableEq α] [Fintype α] (g : Equiv.Perm α) (k : Equiv.Perm α) :
(ConjAct.toConjAct k g).cycleFactorsFinset = Finset.map (MulAut.conj k).toEmbedding g.cycleFactorsFinset
@[simp]
theorem Equiv.Perm.mem_cycleFactorsFinset_conj' {α : Type u_1} [DecidableEq α] [Fintype α] (k : ConjAct (Equiv.Perm α)) (g : Equiv.Perm α) (c : Equiv.Perm α) :
k c (k g).cycleFactorsFinset c g.cycleFactorsFinset

A permutation c is a cycle of g iff k • c is a cycle of k • g

theorem Equiv.Perm.cycleFactorsFinset_conj_eq {α : Type u_1} [DecidableEq α] [Fintype α] (k : ConjAct (Equiv.Perm α)) (g : Equiv.Perm α) :
(k g).cycleFactorsFinset = k g.cycleFactorsFinset