Group actions on embeddings #
This file provides a MulAction G (α ↪ β)
instance that agrees with the MulAction G (α → β)
instances defined by Pi.mulAction
.
Note that unlike the Pi
instance, this requires G
to be a group.
instance
Function.Embedding.smul
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[Group G]
[MulAction G β]
:
Equations
- Function.Embedding.smul = { smul := fun (g : G) (f : α ↪ β) => f.trans (Equiv.toEmbedding (MulAction.toPerm g)) }
instance
Function.Embedding.vadd
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[AddGroup G]
[AddAction G β]
:
Equations
- Function.Embedding.vadd = { vadd := fun (g : G) (f : α ↪ β) => f.trans (Equiv.toEmbedding (AddAction.toPerm g)) }
theorem
Function.Embedding.smul_def
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[Group G]
[MulAction G β]
(g : G)
(f : α ↪ β)
:
g • f = f.trans (Equiv.toEmbedding (MulAction.toPerm g))
theorem
Function.Embedding.vadd_def
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[AddGroup G]
[AddAction G β]
(g : G)
(f : α ↪ β)
:
g +ᵥ f = f.trans (Equiv.toEmbedding (AddAction.toPerm g))
instance
Function.Embedding.instIsScalarTower
{G : Type u_1}
{G' : Type u_2}
{α : Type u_3}
{β : Type u_4}
[Group G]
[Group G']
[SMul G G']
[MulAction G β]
[MulAction G' β]
[IsScalarTower G G' β]
:
IsScalarTower G G' (α ↪ β)
Equations
- ⋯ = ⋯
instance
Function.Embedding.instSMulCommClass
{G : Type u_1}
{G' : Type u_2}
{α : Type u_3}
{β : Type u_4}
[Group G]
[Group G']
[MulAction G β]
[MulAction G' β]
[SMulCommClass G G' β]
:
SMulCommClass G G' (α ↪ β)
Equations
- ⋯ = ⋯
instance
Function.Embedding.instVAddCommClass
{G : Type u_1}
{G' : Type u_2}
{α : Type u_3}
{β : Type u_4}
[AddGroup G]
[AddGroup G']
[AddAction G β]
[AddAction G' β]
[VAddCommClass G G' β]
:
VAddCommClass G G' (α ↪ β)
Equations
- ⋯ = ⋯
instance
Function.Embedding.instIsCentralScalar
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[Group G]
[MulAction G β]
[MulAction Gᵐᵒᵖ β]
[IsCentralScalar G β]
:
IsCentralScalar G (α ↪ β)
Equations
- ⋯ = ⋯