Action of Mᵈᵐᵃ
on α →[N] β
and A →+[N] B
#
In this file we define action of DomMulAct M = Mᵈᵐᵃ
on α →[N] β
and on A →+[N] B
. At the
time of writing, these homomorphisms are not widely used in the library, so we put these instances
into a separate file, not with the definition of DomMulAct
.
TODO #
Add left actions of, e.g., M
on α →[N] β
to Mathlib.Algebra.Hom.GroupAction
and
SMulCommClass
instances saying that left and right actions commute.
instance
DomMulAct.instSMulMulActionHomId
{M : Type u_1}
{α : Type u_2}
{N : Type u_3}
{β : Type u_4}
[SMul M α]
[SMul N α]
[SMulCommClass M N α]
[SMul N β]
:
Equations
- DomMulAct.instSMulMulActionHomId = { smul := fun (c : Mᵈᵐᵃ) (f : α →ₑ[id] β) => f.comp (SMulCommClass.toMulActionHom N α (DomMulAct.mk.symm c)) }
instance
DomMulAct.instSMulCommClassMulActionHomId
{M : Type u_1}
{α : Type u_2}
{N : Type u_3}
{β : Type u_4}
[SMul M α]
[SMul N α]
[SMulCommClass M N α]
[SMul N β]
{M' : Type u_5}
[SMul M' α]
[SMulCommClass M' N α]
[SMulCommClass M M' α]
:
SMulCommClass Mᵈᵐᵃ M'ᵈᵐᵃ (α →ₑ[id] β)
Equations
- ⋯ = ⋯
instance
DomMulAct.instMulActionMulActionHomIdOfSMulCommClass
{M : Type u_1}
{α : Type u_2}
{N : Type u_3}
{β : Type u_4}
[Monoid M]
[MulAction M α]
[SMul N α]
[SMulCommClass M N α]
[SMul N β]
:
Equations
- DomMulAct.instMulActionMulActionHomIdOfSMulCommClass = Function.Injective.mulAction (fun (f : α →ₑ[id] β) => ⇑f) ⋯ ⋯
instance
DomMulAct.instSMulDistribMulActionHomId
{M : Type u_1}
{N : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddMonoid A]
[DistribSMul M A]
[Monoid N]
[AddMonoid B]
[DistribMulAction N A]
[SMulCommClass M N A]
[DistribMulAction N B]
:
Equations
- DomMulAct.instSMulDistribMulActionHomId = { smul := fun (c : Mᵈᵐᵃ) (f : A →+[N] B) => f.comp (SMulCommClass.toDistribMulActionHom N A (DomMulAct.mk.symm c)) }
instance
DomMulAct.instSMulCommClassDistribMulActionHomId
{M : Type u_1}
{N : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddMonoid A]
[DistribSMul M A]
[Monoid N]
[AddMonoid B]
[DistribMulAction N A]
[SMulCommClass M N A]
[DistribMulAction N B]
{M' : Type u_5}
[DistribSMul M' A]
[SMulCommClass M' N A]
[SMulCommClass M M' A]
:
SMulCommClass Mᵈᵐᵃ M'ᵈᵐᵃ (A →+[N] B)
Equations
- ⋯ = ⋯
theorem
DomMulAct.smul_mulDistribActionHom_apply
{M : Type u_1}
{N : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddMonoid A]
[DistribSMul M A]
[Monoid N]
[AddMonoid B]
[DistribMulAction N A]
[SMulCommClass M N A]
[DistribMulAction N B]
(c : Mᵈᵐᵃ)
(f : A →+[N] B)
(a : A)
:
@[simp]
theorem
DomMulAct.mk_smul_mulDistribActionHom_apply
{M : Type u_1}
{N : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddMonoid A]
[DistribSMul M A]
[Monoid N]
[AddMonoid B]
[DistribMulAction N A]
[SMulCommClass M N A]
[DistribMulAction N B]
(c : M)
(f : A →+[N] B)
(a : A)
:
instance
DomMulAct.instMulActionDistribMulActionHomIdOfSMulCommClass
{M : Type u_1}
{N : Type u_2}
{A : Type u_3}
{B : Type u_4}
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
[Monoid N]
[AddMonoid B]
[DistribMulAction N A]
[SMulCommClass M N A]
[DistribMulAction N B]
:
Equations
- DomMulAct.instMulActionDistribMulActionHomIdOfSMulCommClass = Function.Injective.mulAction (fun (f : A →+[N] B) => ⇑f) ⋯ ⋯