Commutators of Subgroups #
If G
is a group and H₁ H₂ : Subgroup G
then the commutator ⁅H₁, H₂⁆ : Subgroup G
is the subgroup of G
generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹
.
Main definitions #
⁅g₁, g₂⁆
: the commutator of the elementsg₁
andg₂
(defined bycommutatorElement
elsewhere).⁅H₁, H₂⁆
: the commutator of the subgroupsH₁
andH₂
.
theorem
Subgroup.map_commutator
{G : Type u_1}
{G' : Type u_2}
[Group G]
[Group G']
(H₁ : Subgroup G)
(H₂ : Subgroup G)
(f : G →* G')
:
Subgroup.map f ⁅H₁, H₂⁆ = ⁅Subgroup.map f H₁, Subgroup.map f H₂⁆
theorem
Subgroup.commutator_pi_pi_le
{η : Type u_4}
{Gs : η → Type u_5}
[(i : η) → Group (Gs i)]
(H : (i : η) → Subgroup (Gs i))
(K : (i : η) → Subgroup (Gs i))
:
⁅Subgroup.pi Set.univ H, Subgroup.pi Set.univ K⁆ ≤ Subgroup.pi Set.univ fun (i : η) => ⁅H i, K i⁆
The commutator of direct product is contained in the direct product of the commutators.
See commutator_pi_pi_of_finite
for equality given Fintype η
.
theorem
Subgroup.commutator_pi_pi_of_finite
{η : Type u_4}
[Finite η]
{Gs : η → Type u_5}
[(i : η) → Group (Gs i)]
(H : (i : η) → Subgroup (Gs i))
(K : (i : η) → Subgroup (Gs i))
:
⁅Subgroup.pi Set.univ H, Subgroup.pi Set.univ K⁆ = Subgroup.pi Set.univ fun (i : η) => ⁅H i, K i⁆
The commutator of a finite direct product is contained in the direct product of the commutators.
Equations
- ⋯ = ⋯
theorem
commutator_mem_commutatorSet
{G : Type u_1}
[Group G]
(g₁ : G)
(g₂ : G)
:
⁅g₁, g₂⁆ ∈ commutatorSet G