Simplices in Euclidean spaces. #
This file defines properties of simplices in a Euclidean space.
Main definitions #
theorem
Affine.Simplex.Equilateral.angle_eq_pi_div_three
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{n : ℕ}
{s : Simplex ℝ P n}
(he : s.Equilateral)
{i₁ i₂ i₃ : Fin (n + 1)}
(h₁₂ : i₁ ≠ i₂)
(h₁₃ : i₁ ≠ i₃)
(h₂₃ : i₂ ≠ i₃)
:
def
Affine.Simplex.AcuteAngled
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{n : ℕ}
(s : Simplex ℝ P n)
:
The property of all angles of a simplex being acute.
Equations
Instances For
@[simp]
theorem
Affine.Simplex.acuteAngled_reindex_iff
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{m n : ℕ}
{s : Simplex ℝ P m}
(e : Fin (m + 1) ≃ Fin (n + 1))
:
theorem
Affine.Simplex.Equilateral.acuteAngled
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{n : ℕ}
{s : Simplex ℝ P n}
(he : s.Equilateral)
:
theorem
Affine.Triangle.acuteAngled_iff_angle_lt
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{t : Triangle ℝ P}
: