Documentation

Mathlib.Dynamics.TopologicalEntropy.Semiconj

Topological entropy of the image of a set under a semiconjugacy #

Consider two dynamical systems (X, S) and (Y, T) together with a semiconjugacy φ:

X ---S--> X
|         |
φ         φ
|         |
v         v
Y ---T--> Y

We relate the topological entropy of a subset F ⊆ X with the topological entropy of its image φ '' F ⊆ Y.

The best-known theorem is that, if all maps are uniformly continuous, then coverEntropy T (φ '' F) ≤ coverEntropy S F. This is theorem coverEntropy_image_le_of_uniformContinuous herein. We actually prove the much more general statement that coverEntropy T (φ '' F) = coverEntropy S F if X is endowed with the pullback by φ of the uniform structure of Y.

This more general statement has another direct consequence: if F is S-invariant, then the topological entropy of the restriction of S to F is exactly coverEntropy S F. This corollary is essential: in most references, the entropy of an invariant subset (or subsystem) F is defined as the entropy of the restriction to F of the system. We chose instead to give a direct definition of the topological entropy of a subset, so as to avoid working with subtypes. Theorem coverEntropy_restrict shows that this choice is coherent with the literature.

Implementation notes #

We use only the definition of the topological entropy using covers; the simplest version of IsDynCoverOf.image for nets fails.

Main results #

Tags #

entropy, semiconjugacy

theorem Dynamics.IsDynCoverOf.image {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) {F : Set X} {V : Set (Y × Y)} {n : } {s : Set X} (h' : Dynamics.IsDynCoverOf S F (Prod.map φ φ ⁻¹' V) n s) :
Dynamics.IsDynCoverOf T (φ '' F) V n (φ '' s)
theorem Dynamics.IsDynCoverOf.preimage {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) {F : Set X} {V : Set (Y × Y)} (V_symm : SymmetricRel V) {n : } {t : Finset Y} (h' : Dynamics.IsDynCoverOf T (φ '' F) V n t) :
∃ (s : Finset X), Dynamics.IsDynCoverOf S F (Prod.map φ φ ⁻¹' compRel V V) n s s.card t.card
theorem Dynamics.le_coverMincard_image {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) {V : Set (Y × Y)} (V_symm : SymmetricRel V) (n : ) :
theorem Dynamics.coverMincard_image_le {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) (V : Set (Y × Y)) (n : ) :
theorem Dynamics.le_coverEntropyEntourage_image {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) {V : Set (Y × Y)} (V_symm : SymmetricRel V) :
theorem Dynamics.le_coverEntropyInfEntourage_image {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) {V : Set (Y × Y)} (V_symm : SymmetricRel V) :
theorem Dynamics.coverEntropyEntourage_image_le {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) (V : Set (Y × Y)) :
theorem Dynamics.coverEntropyInfEntourage_image_le {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) (V : Set (Y × Y)) :
theorem Dynamics.coverEntropy_image_of_comap {X : Type u_1} {Y : Type u_2} (u : UniformSpace Y) {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) :

The entropy of φ '' F equals the entropy of F if X is endowed with the pullback by φ of the uniform structure of Y.

theorem Dynamics.coverEntropyInf_image_of_comap {X : Type u_1} {Y : Type u_2} (u : UniformSpace Y) {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (F : Set X) :

The entropy of φ '' F equals the entropy of F if X is endowed with the pullback by φ of the uniform structure of Y. This version uses a liminf.

The entropy of the restriction of T to an invariant set F is coverEntropy S F. This theorem justifies our definition of coverEntropy T F.

theorem Dynamics.coverEntropy_image_le_of_uniformContinuous {X : Type u_1} {Y : Type u_2} [UniformSpace X] [UniformSpace Y] {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (h' : UniformContinuous φ) (F : Set X) :

The entropy of φ '' F is lower than entropy of F if φ is uniformly continuous.

theorem Dynamics.coverEntropyInf_image_le_of_uniformContinuous {X : Type u_1} {Y : Type u_2} [UniformSpace X] [UniformSpace Y] {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (h' : UniformContinuous φ) (F : Set X) :

The entropy of φ '' F is lower than entropy of F if φ is uniformly continuous. This version uses a liminf.

theorem Dynamics.coverEntropy_image_le_of_uniformContinuousOn_invariant {X : Type u_1} {Y : Type u_2} [UniformSpace X] [UniformSpace Y] {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) {F G : Set X} (h' : UniformContinuousOn φ G) (hF : F G) (hG : Set.MapsTo S G G) :
theorem Dynamics.coverEntropyInf_image_le_of_uniformContinuousOn_invariant {X : Type u_1} {Y : Type u_2} [UniformSpace X] [UniformSpace Y] {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) {F G : Set X} (h' : UniformContinuousOn φ G) (hF : F G) (hG : Set.MapsTo S G G) :