Documentation

Mathlib.Dynamics.Ergodic.AddCircle

Ergodic maps of the additive circle #

This file contains proofs of ergodicity for maps of the additive circle.

Main definitions: #

If a null-measurable subset of the circle is almost invariant under rotation by a family of rational angles with denominators tending to infinity, then it must be almost empty or almost full.

theorem AddCircle.ergodic_zsmul {T : } [hT : Fact (0 < T)] {n : } (hn : 1 < |n|) :
theorem AddCircle.ergodic_nsmul {T : } [hT : Fact (0 < T)] {n : } (hn : 1 < n) :
theorem AddCircle.ergodic_zsmul_add {T : } [hT : Fact (0 < T)] (x : AddCircle T) {n : } (h : 1 < |n|) :
Ergodic (fun (y : AddCircle T) => n y + x) MeasureTheory.volume
theorem AddCircle.ergodic_nsmul_add {T : } [hT : Fact (0 < T)] (x : AddCircle T) {n : } (h : 1 < n) :
Ergodic (fun (y : AddCircle T) => n y + x) MeasureTheory.volume