Regular action of a group on itself is ergodic #
In this file we prove that the left and right actions of a group on itself are ergodic.
instance
instErgodicSMulOfIsMulLeftInvariant
{G : Type u_1}
[Group G]
[MeasurableSpace G]
[MeasurableMul₂ G]
[MeasurableInv G]
{μ : MeasureTheory.Measure G}
[MeasureTheory.SFinite μ]
[μ.IsMulLeftInvariant]
:
ErgodicSMul G G μ
Equations
- ⋯ = ⋯
instance
instErgodicVAddOfIsAddLeftInvariant
{G : Type u_1}
[AddGroup G]
[MeasurableSpace G]
[MeasurableAdd₂ G]
[MeasurableNeg G]
{μ : MeasureTheory.Measure G}
[MeasureTheory.SFinite μ]
[μ.IsAddLeftInvariant]
:
ErgodicVAdd G G μ
Equations
- ⋯ = ⋯
instance
instErgodicSMulMulOppositeOfIsMulRightInvariant
{G : Type u_1}
[Group G]
[MeasurableSpace G]
[MeasurableMul₂ G]
[MeasurableInv G]
{μ : MeasureTheory.Measure G}
[MeasureTheory.SFinite μ]
[μ.IsMulRightInvariant]
:
ErgodicSMul Gᵐᵒᵖ G μ
Equations
- ⋯ = ⋯
instance
instErgodicVAddAddOppositeOfIsAddRightInvariant
{G : Type u_1}
[AddGroup G]
[MeasurableSpace G]
[MeasurableAdd₂ G]
[MeasurableNeg G]
{μ : MeasureTheory.Measure G}
[MeasureTheory.SFinite μ]
[μ.IsAddRightInvariant]
:
ErgodicVAdd Gᵃᵒᵖ G μ
Equations
- ⋯ = ⋯