Documentation

Mathlib.Data.Seq.WSeq

Partially defined possibly infinite lists #

This file provides a WSeq α type representing partially defined possibly infinite lists (referred here as weak sequences).

def Stream'.WSeq (α : Type u_1) :
Type u_1

Weak sequences.

While the Seq structure allows for lists which may not be finite, a weak sequence also allows the computation of each element to involve an indeterminate amount of computation, including possibly an infinite loop. This is represented as a regular Seq interspersed with none elements to indicate that computation is ongoing.

This model is appropriate for Haskell style lazy lists, and is closed under most interesting computation patterns on infinite lists, but conversely it is difficult to extract elements from it.

Equations
def Stream'.WSeq.ofSeq {α : Type u} :
Seq αWSeq α

Turn a sequence into a weak sequence

Equations
def Stream'.WSeq.ofList {α : Type u} (l : List α) :
WSeq α

Turn a list into a weak sequence

Equations
  • l = l
def Stream'.WSeq.ofStream {α : Type u} (l : Stream' α) :
WSeq α

Turn a stream into a weak sequence

Equations
  • l = l
instance Stream'.WSeq.coeSeq {α : Type u} :
Coe (Seq α) (WSeq α)
Equations
instance Stream'.WSeq.coeList {α : Type u} :
Coe (List α) (WSeq α)
Equations
def Stream'.WSeq.nil {α : Type u} :
WSeq α

The empty weak sequence

Equations
def Stream'.WSeq.cons {α : Type u} (a : α) :
WSeq αWSeq α

Prepend an element to a weak sequence

Equations
def Stream'.WSeq.think {α : Type u} :
WSeq αWSeq α

Compute for one tick, without producing any elements

Equations
def Stream'.WSeq.destruct {α : Type u} :
WSeq αComputation (Option (α × WSeq α))

Destruct a weak sequence, to (eventually possibly) produce either none for nil or some (a, s) if an element is produced.

Equations
  • One or more equations did not get rendered due to their size.
def Stream'.WSeq.recOn {α : Type u} {C : WSeq αSort v} (s : WSeq α) (h1 : C nil) (h2 : (x : α) → (s : WSeq α) → C (cons x s)) (h3 : (s : WSeq α) → C s.think) :
C s

Recursion principle for weak sequences, compare with List.recOn.

Equations
def Stream'.WSeq.Mem {α : Type u} (s : WSeq α) (a : α) :

membership for weak sequences

Equations
theorem Stream'.WSeq.not_mem_nil {α : Type u} (a : α) :
def Stream'.WSeq.head {α : Type u} (s : WSeq α) :

Get the head of a weak sequence. This involves a possibly infinite computation.

Equations
def Stream'.WSeq.flatten {α : Type u} :
Computation (WSeq α)WSeq α

Encode a computation yielding a weak sequence into additional think constructors in a weak sequence

Equations
  • One or more equations did not get rendered due to their size.
def Stream'.WSeq.tail {α : Type u} (s : WSeq α) :
WSeq α

Get the tail of a weak sequence. This doesn't need a Computation wrapper, unlike head, because flatten allows us to hide this in the construction of the weak sequence itself.

Equations
def Stream'.WSeq.drop {α : Type u} (s : WSeq α) :
WSeq α

drop the first n elements from s.

Equations
def Stream'.WSeq.get? {α : Type u} (s : WSeq α) (n : ) :

Get the nth element of s.

Equations
def Stream'.WSeq.toList {α : Type u} (s : WSeq α) :

Convert s to a list (if it is finite and completes in finite time).

Equations
  • One or more equations did not get rendered due to their size.

Get the length of s (if it is finite and completes in finite time).

Equations
  • One or more equations did not get rendered due to their size.
class Stream'.WSeq.IsFinite {α : Type u} (s : WSeq α) :

A weak sequence is finite if toList s terminates. Equivalently, it is a finite number of think and cons applied to nil.

Instances
    def Stream'.WSeq.get {α : Type u} (s : WSeq α) [s.IsFinite] :
    List α

    Get the list corresponding to a finite weak sequence.

    Equations
    class Stream'.WSeq.Productive {α : Type u} (s : WSeq α) :

    A weak sequence is productive if it never stalls forever - there are always a finite number of thinks between cons constructors. The sequence itself is allowed to be infinite though.

    Instances
      theorem Stream'.WSeq.productive_iff {α : Type u} (s : WSeq α) :
      s.Productive ∀ (n : ), (s.get? n).Terminates
      instance Stream'.WSeq.get?_terminates {α : Type u} (s : WSeq α) [h : s.Productive] (n : ) :
      def Stream'.WSeq.updateNth {α : Type u} (s : WSeq α) (n : ) (a : α) :
      WSeq α

      Replace the nth element of s with a.

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.removeNth {α : Type u} (s : WSeq α) (n : ) :
      WSeq α

      Remove the nth element of s.

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.filterMap {α : Type u} {β : Type v} (f : αOption β) :
      WSeq αWSeq β

      Map the elements of s over f, removing any values that yield none.

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.filter {α : Type u} (p : αProp) [DecidablePred p] :
      WSeq αWSeq α

      Select the elements of s that satisfy p.

      Equations
      def Stream'.WSeq.find {α : Type u} (p : αProp) [DecidablePred p] (s : WSeq α) :

      Get the first element of s satisfying p.

      Equations
      def Stream'.WSeq.zipWith {α : Type u} {β : Type v} {γ : Type w} (f : αβγ) (s1 : WSeq α) (s2 : WSeq β) :
      WSeq γ

      Zip a function over two weak sequences

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.zip {α : Type u} {β : Type v} :
      WSeq αWSeq βWSeq (α × β)

      Zip two weak sequences into a single sequence of pairs

      Equations
      def Stream'.WSeq.findIndexes {α : Type u} (p : αProp) [DecidablePred p] (s : WSeq α) :

      Get the list of indexes of elements of s satisfying p

      Equations
      def Stream'.WSeq.findIndex {α : Type u} (p : αProp) [DecidablePred p] (s : WSeq α) :

      Get the index of the first element of s satisfying p

      Equations
      def Stream'.WSeq.indexOf {α : Type u} [DecidableEq α] (a : α) :

      Get the index of the first occurrence of a in s

      Equations
      def Stream'.WSeq.indexesOf {α : Type u} [DecidableEq α] (a : α) :
      WSeq αWSeq

      Get the indexes of occurrences of a in s

      Equations
      def Stream'.WSeq.union {α : Type u} (s1 s2 : WSeq α) :
      WSeq α

      union s1 s2 is a weak sequence which interleaves s1 and s2 in some order (nondeterministically).

      Equations
      • One or more equations did not get rendered due to their size.

      Returns true if s is nil and false if s has an element

      Equations
      def Stream'.WSeq.compute {α : Type u} (s : WSeq α) :
      WSeq α

      Calculate one step of computation

      Equations
      def Stream'.WSeq.take {α : Type u} (s : WSeq α) (n : ) :
      WSeq α

      Get the first n elements of a weak sequence

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.splitAt {α : Type u} (s : WSeq α) (n : ) :

      Split the sequence at position n into a finite initial segment and the weak sequence tail

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.any {α : Type u} (s : WSeq α) (p : αBool) :

      Returns true if any element of s satisfies p

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.all {α : Type u} (s : WSeq α) (p : αBool) :

      Returns true if every element of s satisfies p

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.scanl {α : Type u} {β : Type v} (f : αβα) (a : α) (s : WSeq β) :
      WSeq α

      Apply a function to the elements of the sequence to produce a sequence of partial results. (There is no scanr because this would require working from the end of the sequence, which may not exist.)

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.inits {α : Type u} (s : WSeq α) :
      WSeq (List α)

      Get the weak sequence of initial segments of the input sequence

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.collect {α : Type u} (s : WSeq α) (n : ) :
      List α

      Like take, but does not wait for a result. Calculates n steps of computation and returns the sequence computed so far

      Equations
      def Stream'.WSeq.append {α : Type u} :
      WSeq αWSeq αWSeq α

      Append two weak sequences. As with Seq.append, this may not use the second sequence if the first one takes forever to compute

      Equations
      def Stream'.WSeq.map {α : Type u} {β : Type v} (f : αβ) :
      WSeq αWSeq β

      Map a function over a weak sequence

      Equations
      def Stream'.WSeq.join {α : Type u} (S : WSeq (WSeq α)) :
      WSeq α

      Flatten a sequence of weak sequences. (Note that this allows empty sequences, unlike Seq.join.)

      Equations
      def Stream'.WSeq.bind {α : Type u} {β : Type v} (s : WSeq α) (f : αWSeq β) :
      WSeq β

      Monadic bind operator for weak sequences

      Equations
      def Stream'.WSeq.LiftRelO {α : Type u} {β : Type v} (R : αβProp) (C : WSeq αWSeq βProp) :
      Option (α × WSeq α)Option (β × WSeq β)Prop

      lift a relation to a relation over weak sequences

      Equations
      theorem Stream'.WSeq.LiftRelO.imp {α : Type u} {β : Type v} {R S : αβProp} {C D : WSeq αWSeq βProp} (H1 : ∀ (a : α) (b : β), R a bS a b) (H2 : ∀ (s : WSeq α) (t : WSeq β), C s tD s t) {o : Option (α × WSeq α)} {p : Option (β × WSeq β)} :
      LiftRelO R C o pLiftRelO S D o p
      theorem Stream'.WSeq.LiftRelO.imp_right {α : Type u} {β : Type v} (R : αβProp) {C D : WSeq αWSeq βProp} (H : ∀ (s : WSeq α) (t : WSeq β), C s tD s t) {o : Option (α × WSeq α)} {p : Option (β × WSeq β)} :
      LiftRelO R C o pLiftRelO R D o p
      def Stream'.WSeq.BisimO {α : Type u} (R : WSeq αWSeq αProp) :
      Option (α × WSeq α)Option (α × WSeq α)Prop

      Definition of bisimilarity for weak sequences

      Equations
      theorem Stream'.WSeq.BisimO.imp {α : Type u} {R S : WSeq αWSeq αProp} (H : ∀ (s t : WSeq α), R s tS s t) {o p : Option (α × WSeq α)} :
      BisimO R o pBisimO S o p
      def Stream'.WSeq.LiftRel {α : Type u} {β : Type v} (R : αβProp) (s : WSeq α) (t : WSeq β) :

      Two weak sequences are LiftRel R related if they are either both empty, or they are both nonempty and the heads are R related and the tails are LiftRel R related. (This is a coinductive definition.)

      Equations
      • One or more equations did not get rendered due to their size.
      def Stream'.WSeq.Equiv {α : Type u} :
      WSeq αWSeq αProp

      If two sequences are equivalent, then they have the same values and the same computational behavior (i.e. if one loops forever then so does the other), although they may differ in the number of thinks needed to arrive at the answer.

      Equations
      theorem Stream'.WSeq.liftRel_destruct {α : Type u} {β : Type v} {R : αβProp} {s : WSeq α} {t : WSeq β} :
      theorem Stream'.WSeq.liftRel_destruct_iff {α : Type u} {β : Type v} {R : αβProp} {s : WSeq α} {t : WSeq β} :

      If two sequences are equivalent, then they have the same values and the same computational behavior (i.e. if one loops forever then so does the other), although they may differ in the number of thinks needed to arrive at the answer.

      Equations
      theorem Stream'.WSeq.destruct_congr {α : Type u} {s t : WSeq α} :
      s tComputation.LiftRel (BisimO fun (x1 x2 : WSeq α) => x1 x2) s.destruct t.destruct
      theorem Stream'.WSeq.destruct_congr_iff {α : Type u} {s t : WSeq α} :
      s t Computation.LiftRel (BisimO fun (x1 x2 : WSeq α) => x1 x2) s.destruct t.destruct
      theorem Stream'.WSeq.LiftRel.refl {α : Type u} (R : ααProp) (H : Reflexive R) :
      theorem Stream'.WSeq.LiftRelO.swap {α : Type u} {β : Type v} (R : αβProp) (C : WSeq αWSeq βProp) :
      theorem Stream'.WSeq.LiftRel.swap_lem {α : Type u} {β : Type v} {R : αβProp} {s1 : WSeq α} {s2 : WSeq β} (h : LiftRel R s1 s2) :
      theorem Stream'.WSeq.LiftRel.swap {α : Type u} {β : Type v} (R : αβProp) :
      theorem Stream'.WSeq.LiftRel.symm {α : Type u} (R : ααProp) (H : Symmetric R) :
      theorem Stream'.WSeq.LiftRel.trans {α : Type u} (R : ααProp) (H : Transitive R) :
      theorem Stream'.WSeq.LiftRel.equiv {α : Type u} (R : ααProp) :
      theorem Stream'.WSeq.Equiv.refl {α : Type u} (s : WSeq α) :
      s s
      theorem Stream'.WSeq.Equiv.symm {α : Type u} {s t : WSeq α} :
      s tt s
      theorem Stream'.WSeq.Equiv.trans {α : Type u} {s t u : WSeq α} :
      s tt us u
      @[simp]
      theorem Stream'.WSeq.destruct_cons {α : Type u} (a : α) (s : WSeq α) :
      @[simp]
      @[simp]
      theorem Stream'.WSeq.seq_destruct_cons {α : Type u} (a : α) (s : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.head_cons {α : Type u} (a : α) (s : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.head_think {α : Type u} (s : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.flatten_pure {α : Type u} (s : WSeq α) :
      @[simp]
      @[simp]
      @[simp]
      theorem Stream'.WSeq.tail_cons {α : Type u} (a : α) (s : WSeq α) :
      (cons a s).tail = s
      @[simp]
      theorem Stream'.WSeq.tail_think {α : Type u} (s : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.dropn_nil {α : Type u} (n : ) :
      @[simp]
      theorem Stream'.WSeq.dropn_cons {α : Type u} (a : α) (s : WSeq α) (n : ) :
      (cons a s).drop (n + 1) = s.drop n
      @[simp]
      theorem Stream'.WSeq.dropn_think {α : Type u} (s : WSeq α) (n : ) :
      s.think.drop n = (s.drop n).think
      theorem Stream'.WSeq.dropn_add {α : Type u} (s : WSeq α) (m n : ) :
      s.drop (m + n) = (s.drop m).drop n
      theorem Stream'.WSeq.dropn_tail {α : Type u} (s : WSeq α) (n : ) :
      s.tail.drop n = s.drop (n + 1)
      theorem Stream'.WSeq.get?_add {α : Type u} (s : WSeq α) (m n : ) :
      s.get? (m + n) = (s.drop m).get? n
      theorem Stream'.WSeq.get?_tail {α : Type u} (s : WSeq α) (n : ) :
      s.tail.get? n = s.get? (n + 1)
      @[simp]
      @[simp]
      theorem Stream'.WSeq.join_think {α : Type u} (S : WSeq (WSeq α)) :
      @[simp]
      theorem Stream'.WSeq.join_cons {α : Type u} (s : WSeq α) (S : WSeq (WSeq α)) :
      (cons s S).join = (s.append S.join).think
      @[simp]
      theorem Stream'.WSeq.nil_append {α : Type u} (s : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.cons_append {α : Type u} (a : α) (s t : WSeq α) :
      (cons a s).append t = cons a (s.append t)
      @[simp]
      theorem Stream'.WSeq.think_append {α : Type u} (s t : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.append_nil {α : Type u} (s : WSeq α) :
      @[simp]
      theorem Stream'.WSeq.append_assoc {α : Type u} (s t u : WSeq α) :
      (s.append t).append u = s.append (t.append u)
      def Stream'.WSeq.tail.aux {α : Type u} :
      Option (α × WSeq α)Computation (Option (α × WSeq α))

      auxiliary definition of tail over weak sequences

      Equations
      def Stream'.WSeq.drop.aux {α : Type u} :
      Option (α × WSeq α)Computation (Option (α × WSeq α))

      auxiliary definition of drop over weak sequences

      Equations
      theorem Stream'.WSeq.destruct_dropn {α : Type u} (s : WSeq α) (n : ) :
      theorem Stream'.WSeq.destruct_some_of_destruct_tail_some {α : Type u} {s : WSeq α} {a : α × WSeq α} (h : some a s.tail.destruct) :
      (a' : α × WSeq α), some a' s.destruct
      theorem Stream'.WSeq.head_some_of_head_tail_some {α : Type u} {s : WSeq α} {a : α} (h : some a s.tail.head) :
      (a' : α), some a' s.head
      theorem Stream'.WSeq.head_some_of_get?_some {α : Type u} {s : WSeq α} {a : α} {n : } (h : some a s.get? n) :
      (a' : α), some a' s.head
      instance Stream'.WSeq.productive_dropn {α : Type u} (s : WSeq α) [s.Productive] (n : ) :
      def Stream'.WSeq.toSeq {α : Type u} (s : WSeq α) [s.Productive] :
      Seq α

      Given a productive weak sequence, we can collapse all the thinks to produce a sequence.

      Equations
      theorem Stream'.WSeq.get?_terminates_le {α : Type u} {s : WSeq α} {m n : } (h : m n) :
      (s.get? n).Terminates(s.get? m).Terminates
      theorem Stream'.WSeq.mem_rec_on {α : Type u} {C : WSeq αProp} {a : α} {s : WSeq α} (M : a s) (h1 : ∀ (b : α) (s' : WSeq α), a = b C s'C (cons b s')) (h2 : ∀ (s : WSeq α), C sC s.think) :
      C s
      @[simp]
      theorem Stream'.WSeq.mem_think {α : Type u} (s : WSeq α) (a : α) :
      a s.think a s
      theorem Stream'.WSeq.eq_or_mem_iff_mem {α : Type u} {s : WSeq α} {a a' : α} {s' : WSeq α} :
      some (a', s') s.destruct → (a s a = a' a s')
      @[simp]
      theorem Stream'.WSeq.mem_cons_iff {α : Type u} (s : WSeq α) (b : α) {a : α} :
      a cons b s a = b a s
      theorem Stream'.WSeq.mem_cons_of_mem {α : Type u} {s : WSeq α} (b : α) {a : α} (h : a s) :
      a cons b s
      theorem Stream'.WSeq.mem_cons {α : Type u} (s : WSeq α) (a : α) :
      a cons a s
      theorem Stream'.WSeq.mem_of_mem_tail {α : Type u} {s : WSeq α} {a : α} :
      a s.taila s
      theorem Stream'.WSeq.mem_of_mem_dropn {α : Type u} {s : WSeq α} {a : α} {n : } :
      a s.drop na s
      theorem Stream'.WSeq.get?_mem {α : Type u} {s : WSeq α} {a : α} {n : } :
      some a s.get? na s
      theorem Stream'.WSeq.exists_get?_of_mem {α : Type u} {s : WSeq α} {a : α} (h : a s) :
      theorem Stream'.WSeq.exists_dropn_of_mem {α : Type u} {s : WSeq α} {a : α} (h : a s) :
      theorem Stream'.WSeq.liftRel_dropn_destruct {α : Type u} {β : Type v} {R : αβProp} {s : WSeq α} {t : WSeq β} (H : LiftRel R s t) (n : ) :
      theorem Stream'.WSeq.exists_of_liftRel_left {α : Type u} {β : Type v} {R : αβProp} {s : WSeq α} {t : WSeq β} (H : LiftRel R s t) {a : α} (h : a s) :
      (b : β), b t R a b
      theorem Stream'.WSeq.exists_of_liftRel_right {α : Type u} {β : Type v} {R : αβProp} {s : WSeq α} {t : WSeq β} (H : LiftRel R s t) {b : β} (h : b t) :
      (a : α), a s R a b
      theorem Stream'.WSeq.head_terminates_of_mem {α : Type u} {s : WSeq α} {a : α} (h : a s) :
      theorem Stream'.WSeq.of_mem_append {α : Type u} {s₁ s₂ : WSeq α} {a : α} :
      a s₁.append s₂a s₁ a s₂
      theorem Stream'.WSeq.mem_append_left {α : Type u} {s₁ s₂ : WSeq α} {a : α} :
      a s₁a s₁.append s₂
      theorem Stream'.WSeq.exists_of_mem_map {α : Type u} {β : Type v} {f : αβ} {b : β} {s : WSeq α} :
      b map f s (a : α), a s f a = b
      @[simp]
      theorem Stream'.WSeq.liftRel_nil {α : Type u} {β : Type v} (R : αβProp) :
      @[simp]
      theorem Stream'.WSeq.liftRel_cons {α : Type u} {β : Type v} (R : αβProp) (a : α) (b : β) (s : WSeq α) (t : WSeq β) :
      LiftRel R (cons a s) (cons b t) R a b LiftRel R s t
      @[simp]
      theorem Stream'.WSeq.liftRel_think_left {α : Type u} {β : Type v} (R : αβProp) (s : WSeq α) (t : WSeq β) :
      LiftRel R s.think t LiftRel R s t
      @[simp]
      theorem Stream'.WSeq.liftRel_think_right {α : Type u} {β : Type v} (R : αβProp) (s : WSeq α) (t : WSeq β) :
      LiftRel R s t.think LiftRel R s t
      theorem Stream'.WSeq.cons_congr {α : Type u} {s t : WSeq α} (a : α) (h : s t) :
      cons a s cons a t
      theorem Stream'.WSeq.think_equiv {α : Type u} (s : WSeq α) :
      theorem Stream'.WSeq.think_congr {α : Type u} {s t : WSeq α} (h : s t) :
      theorem Stream'.WSeq.head_congr {α : Type u} {s t : WSeq α} :
      s ts.head.Equiv t.head
      theorem Stream'.WSeq.flatten_equiv {α : Type u} {c : Computation (WSeq α)} {s : WSeq α} (h : s c) :
      theorem Stream'.WSeq.liftRel_flatten {α : Type u} {β : Type v} {R : αβProp} {c1 : Computation (WSeq α)} {c2 : Computation (WSeq β)} (h : Computation.LiftRel (LiftRel R) c1 c2) :
      LiftRel R (flatten c1) (flatten c2)
      theorem Stream'.WSeq.tail_congr {α : Type u} {s t : WSeq α} (h : s t) :
      theorem Stream'.WSeq.dropn_congr {α : Type u} {s t : WSeq α} (h : s t) (n : ) :
      s.drop n t.drop n
      theorem Stream'.WSeq.get?_congr {α : Type u} {s t : WSeq α} (h : s t) (n : ) :
      (s.get? n).Equiv (t.get? n)
      theorem Stream'.WSeq.mem_congr {α : Type u} {s t : WSeq α} (h : s t) (a : α) :
      a s a t
      theorem Stream'.WSeq.productive_congr {α : Type u} {s t : WSeq α} (h : s t) :
      theorem Stream'.WSeq.Equiv.ext {α : Type u} {s t : WSeq α} (h : ∀ (n : ), (s.get? n).Equiv (t.get? n)) :
      s t
      @[simp]
      theorem Stream'.WSeq.ofList_nil {α : Type u} :
      [] = nil
      @[simp]
      theorem Stream'.WSeq.ofList_cons {α : Type u} (a : α) (l : List α) :
      ↑(a :: l) = cons a l
      @[simp]
      theorem Stream'.WSeq.toList'_nil {α : Type u} (l : List α) :
      Computation.corec (fun (x : List α × WSeq α) => match x with | (l, s) => match Seq.destruct s with | none => Sum.inl l.reverse | some (none, s') => Sum.inr (l, s') | some (some a, s') => Sum.inr (a :: l, s')) (l, nil) = Computation.pure l.reverse
      @[simp]
      theorem Stream'.WSeq.toList'_cons {α : Type u} (l : List α) (s : WSeq α) (a : α) :
      Computation.corec (fun (x : List α × WSeq α) => match x with | (l, s) => match Seq.destruct s with | none => Sum.inl l.reverse | some (none, s') => Sum.inr (l, s') | some (some a, s') => Sum.inr (a :: l, s')) (l, cons a s) = (Computation.corec (fun (x : List α × WSeq α) => match x with | (l, s) => match Seq.destruct s with | none => Sum.inl l.reverse | some (none, s') => Sum.inr (l, s') | some (some a, s') => Sum.inr (a :: l, s')) (a :: l, s)).think
      @[simp]
      theorem Stream'.WSeq.toList'_think {α : Type u} (l : List α) (s : WSeq α) :
      Computation.corec (fun (x : List α × WSeq α) => match x with | (l, s) => match Seq.destruct s with | none => Sum.inl l.reverse | some (none, s') => Sum.inr (l, s') | some (some a, s') => Sum.inr (a :: l, s')) (l, s.think) = (Computation.corec (fun (x : List α × WSeq α) => match x with | (l, s) => match Seq.destruct s with | none => Sum.inl l.reverse | some (none, s') => Sum.inr (l, s') | some (some a, s') => Sum.inr (a :: l, s')) (l, s)).think
      theorem Stream'.WSeq.toList'_map {α : Type u} (l : List α) (s : WSeq α) :
      Computation.corec (fun (x : List α × WSeq α) => match x with | (l, s) => match Seq.destruct s with | none => Sum.inl l.reverse | some (none, s') => Sum.inr (l, s') | some (some a, s') => Sum.inr (a :: l, s')) (l, s) = (fun (x : List α) => l.reverse ++ x) <$> s.toList
      @[simp]
      theorem Stream'.WSeq.toList_cons {α : Type u} (a : α) (s : WSeq α) :
      theorem Stream'.WSeq.toList_ofList {α : Type u} (l : List α) :
      l (↑l).toList
      @[simp]
      theorem Stream'.WSeq.destruct_ofSeq {α : Type u} (s : Seq α) :
      (↑s).destruct = Computation.pure (Option.map (fun (a : α) => (a, s.tail)) s.head)
      @[simp]
      theorem Stream'.WSeq.head_ofSeq {α : Type u} (s : Seq α) :
      @[simp]
      theorem Stream'.WSeq.tail_ofSeq {α : Type u} (s : Seq α) :
      (↑s).tail = s.tail
      @[simp]
      theorem Stream'.WSeq.dropn_ofSeq {α : Type u} (s : Seq α) (n : ) :
      (↑s).drop n = (s.drop n)
      theorem Stream'.WSeq.get?_ofSeq {α : Type u} (s : Seq α) (n : ) :
      (↑s).get? n = Computation.pure (s.get? n)
      instance Stream'.WSeq.productive_ofSeq {α : Type u} (s : Seq α) :
      (↑s).Productive
      theorem Stream'.WSeq.toSeq_ofSeq {α : Type u} (s : Seq α) :
      (↑s).toSeq = s
      def Stream'.WSeq.ret {α : Type u} (a : α) :
      WSeq α

      The monadic return a is a singleton list containing a.

      Equations
      @[simp]
      theorem Stream'.WSeq.map_nil {α : Type u} {β : Type v} (f : αβ) :
      @[simp]
      theorem Stream'.WSeq.map_cons {α : Type u} {β : Type v} (f : αβ) (a : α) (s : WSeq α) :
      map f (cons a s) = cons (f a) (map f s)
      @[simp]
      theorem Stream'.WSeq.map_think {α : Type u} {β : Type v} (f : αβ) (s : WSeq α) :
      map f s.think = (map f s).think
      @[simp]
      theorem Stream'.WSeq.map_id {α : Type u} (s : WSeq α) :
      map id s = s
      @[simp]
      theorem Stream'.WSeq.map_ret {α : Type u} {β : Type v} (f : αβ) (a : α) :
      map f (ret a) = ret (f a)
      @[simp]
      theorem Stream'.WSeq.map_append {α : Type u} {β : Type v} (f : αβ) (s t : WSeq α) :
      map f (s.append t) = (map f s).append (map f t)
      theorem Stream'.WSeq.map_comp {α : Type u} {β : Type v} {γ : Type w} (f : αβ) (g : βγ) (s : WSeq α) :
      map (g f) s = map g (map f s)
      theorem Stream'.WSeq.mem_map {α : Type u} {β : Type v} (f : αβ) {a : α} {s : WSeq α} :
      a sf a map f s
      theorem Stream'.WSeq.exists_of_mem_join {α : Type u} {a : α} {S : WSeq (WSeq α)} :
      a S.join (s : WSeq α), s S a s
      theorem Stream'.WSeq.exists_of_mem_bind {α : Type u} {β : Type v} {s : WSeq α} {f : αWSeq β} {b : β} (h : b s.bind f) :
      (a : α), a s b f a
      theorem Stream'.WSeq.destruct_map {α : Type u} {β : Type v} (f : αβ) (s : WSeq α) :
      theorem Stream'.WSeq.liftRel_map {α : Type u} {β : Type v} {γ : Type w} {δ : Type u_1} (R : αβProp) (S : γδProp) {s1 : WSeq α} {s2 : WSeq β} {f1 : αγ} {f2 : βδ} (h1 : LiftRel R s1 s2) (h2 : ∀ {a : α} {b : β}, R a bS (f1 a) (f2 b)) :
      LiftRel S (map f1 s1) (map f2 s2)
      theorem Stream'.WSeq.map_congr {α : Type u} {β : Type v} (f : αβ) {s t : WSeq α} (h : s t) :
      map f s map f t
      theorem Stream'.WSeq.liftRel_append {α : Type u} {β : Type v} (R : αβProp) {s1 s2 : WSeq α} {t1 t2 : WSeq β} (h1 : LiftRel R s1 t1) (h2 : LiftRel R s2 t2) :
      LiftRel R (s1.append s2) (t1.append t2)
      theorem Stream'.WSeq.liftRel_join.lem {α : Type u} {β : Type v} (R : αβProp) {S : WSeq (WSeq α)} {T : WSeq (WSeq β)} {U : WSeq αWSeq βProp} (ST : LiftRel (LiftRel R) S T) (HU : ∀ (s1 : WSeq α) (s2 : WSeq β), ( (s : WSeq α), (t : WSeq β), (S : WSeq (WSeq α)), (T : WSeq (WSeq β)), s1 = s.append S.join s2 = t.append T.join LiftRel R s t LiftRel (LiftRel R) S T) → U s1 s2) {a : Option (α × WSeq α)} (ma : a S.join.destruct) :
      (b : Option (β × WSeq β)), b T.join.destruct LiftRelO R U a b
      theorem Stream'.WSeq.liftRel_join {α : Type u} {β : Type v} (R : αβProp) {S : WSeq (WSeq α)} {T : WSeq (WSeq β)} (h : LiftRel (LiftRel R) S T) :
      theorem Stream'.WSeq.join_congr {α : Type u} {S T : WSeq (WSeq α)} (h : LiftRel Equiv S T) :
      theorem Stream'.WSeq.liftRel_bind {α : Type u} {β : Type v} {γ : Type w} {δ : Type u_1} (R : αβProp) (S : γδProp) {s1 : WSeq α} {s2 : WSeq β} {f1 : αWSeq γ} {f2 : βWSeq δ} (h1 : LiftRel R s1 s2) (h2 : ∀ {a : α} {b : β}, R a bLiftRel S (f1 a) (f2 b)) :
      LiftRel S (s1.bind f1) (s2.bind f2)
      theorem Stream'.WSeq.bind_congr {α : Type u} {β : Type v} {s1 s2 : WSeq α} {f1 f2 : αWSeq β} (h1 : s1 s2) (h2 : ∀ (a : α), f1 a f2 a) :
      s1.bind f1 s2.bind f2
      @[simp]
      theorem Stream'.WSeq.join_ret {α : Type u} (s : WSeq α) :
      (ret s).join s
      @[simp]
      theorem Stream'.WSeq.join_map_ret {α : Type u} (s : WSeq α) :
      (map ret s).join s
      @[simp]
      theorem Stream'.WSeq.join_append {α : Type u} (S T : WSeq (WSeq α)) :
      @[simp]
      theorem Stream'.WSeq.bind_ret {α : Type u} {β : Type v} (f : αβ) (s : WSeq α) :
      s.bind (ret f) map f s
      @[simp]
      theorem Stream'.WSeq.ret_bind {α : Type u} {β : Type v} (a : α) (f : αWSeq β) :
      (ret a).bind f f a
      @[simp]
      theorem Stream'.WSeq.map_join {α : Type u} {β : Type v} (f : αβ) (S : WSeq (WSeq α)) :
      map f S.join = (map (map f) S).join
      @[simp]
      theorem Stream'.WSeq.join_join {α : Type u} (SS : WSeq (WSeq (WSeq α))) :
      @[simp]
      theorem Stream'.WSeq.bind_assoc {α : Type u} {β : Type v} {γ : Type w} (s : WSeq α) (f : αWSeq β) (g : βWSeq γ) :
      (s.bind f).bind g s.bind fun (x : α) => (f x).bind g