Documentation

Mathlib.Data.PEquiv

Partial Equivalences #

In this file, we define partial equivalences PEquiv, which are a bijection between a subset of α and a subset of β. Notationally, a PEquiv is denoted by "≃." (note that the full stop is part of the notation). The way we store these internally is with two functions f : α → Option β and the reverse function g : β → Option α, with the condition that if f a is some b, then g b is some a.

Main results #

Canonical order #

PEquiv is canonically ordered by inclusion; that is, if a function f defined on a subset s is equal to g on that subset, but g is also defined on a larger set, then f ≤ g. We also have a definition of , which is the empty PEquiv (sends all to none), which in the end gives us a SemilatticeInf with an OrderBot instance.

Tags #

pequiv, partial equivalence

structure PEquiv (α : Type u) (β : Type v) :
Type (max u v)

A PEquiv is a partial equivalence, a representation of a bijection between a subset of α and a subset of β. See also PartialEquiv for a version that requires toFun and invFun to be globally defined functions and has source and target sets as extra fields.

  • toFun : αOption β

    The underlying partial function of a PEquiv

  • invFun : βOption α

    The partial inverse of toFun

  • inv : ∀ (a : α) (b : β), a self.invFun b b self.toFun a

    invFun is the partial inverse of toFun

Instances For
    theorem PEquiv.inv {α : Type u} {β : Type v} (self : α ≃. β) (a : α) (b : β) :
    a self.invFun b b self.toFun a

    invFun is the partial inverse of toFun

    A PEquiv is a partial equivalence, a representation of a bijection between a subset of α and a subset of β. See also PartialEquiv for a version that requires toFun and invFun to be globally defined functions and has source and target sets as extra fields.

    Equations
    Instances For
      instance PEquiv.instFunLikeOption {α : Type u} {β : Type v} :
      FunLike (α ≃. β) α (Option β)
      Equations
      • PEquiv.instFunLikeOption = { coe := PEquiv.toFun, coe_injective' := }
      @[simp]
      theorem PEquiv.coe_mk {α : Type u} {β : Type v} (f₁ : αOption β) (f₂ : βOption α) (h : ∀ (a : α) (b : β), a f₂ b b f₁ a) :
      { toFun := f₁, invFun := f₂, inv := h } = f₁
      theorem PEquiv.coe_mk_apply {α : Type u} {β : Type v} (f₁ : αOption β) (f₂ : βOption α) (h : ∀ (a : α) (b : β), a f₂ b b f₁ a) (x : α) :
      { toFun := f₁, invFun := f₂, inv := h } x = f₁ x
      theorem PEquiv.ext {α : Type u} {β : Type v} {f : α ≃. β} {g : α ≃. β} (h : ∀ (x : α), f x = g x) :
      f = g
      def PEquiv.refl (α : Type u_1) :
      α ≃. α

      The identity map as a partial equivalence.

      Equations
      • PEquiv.refl α = { toFun := some, invFun := some, inv := }
      Instances For
        def PEquiv.symm {α : Type u} {β : Type v} (f : α ≃. β) :
        β ≃. α

        The inverse partial equivalence.

        Equations
        • f.symm = { toFun := f.invFun, invFun := f.toFun, inv := }
        Instances For
          theorem PEquiv.mem_iff_mem {α : Type u} {β : Type v} (f : α ≃. β) {a : α} {b : β} :
          a f.symm b b f a
          theorem PEquiv.eq_some_iff {α : Type u} {β : Type v} (f : α ≃. β) {a : α} {b : β} :
          f.symm b = some a f a = some b
          def PEquiv.trans {α : Type u} {β : Type v} {γ : Type w} (f : α ≃. β) (g : β ≃. γ) :
          α ≃. γ

          Composition of partial equivalences f : α ≃. β and g : β ≃. γ.

          Equations
          • f.trans g = { toFun := fun (a : α) => (f a).bind g, invFun := fun (a : γ) => (g.symm a).bind f.symm, inv := }
          Instances For
            @[simp]
            theorem PEquiv.refl_apply {α : Type u} (a : α) :
            (PEquiv.refl α) a = some a
            @[simp]
            theorem PEquiv.symm_refl {α : Type u} :
            @[simp]
            theorem PEquiv.symm_symm {α : Type u} {β : Type v} (f : α ≃. β) :
            f.symm.symm = f
            theorem PEquiv.symm_bijective {α : Type u} {β : Type v} :
            Function.Bijective PEquiv.symm
            theorem PEquiv.symm_injective {α : Type u} {β : Type v} :
            Function.Injective PEquiv.symm
            theorem PEquiv.trans_assoc {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} (f : α ≃. β) (g : β ≃. γ) (h : γ ≃. δ) :
            (f.trans g).trans h = f.trans (g.trans h)
            theorem PEquiv.mem_trans {α : Type u} {β : Type v} {γ : Type w} (f : α ≃. β) (g : β ≃. γ) (a : α) (c : γ) :
            c (f.trans g) a bf a, c g b
            theorem PEquiv.trans_eq_some {α : Type u} {β : Type v} {γ : Type w} (f : α ≃. β) (g : β ≃. γ) (a : α) (c : γ) :
            (f.trans g) a = some c ∃ (b : β), f a = some b g b = some c
            theorem PEquiv.trans_eq_none {α : Type u} {β : Type v} {γ : Type w} (f : α ≃. β) (g : β ≃. γ) (a : α) :
            (f.trans g) a = none ∀ (b : β) (c : γ), bf a cg b
            @[simp]
            theorem PEquiv.refl_trans {α : Type u} {β : Type v} (f : α ≃. β) :
            (PEquiv.refl α).trans f = f
            @[simp]
            theorem PEquiv.trans_refl {α : Type u} {β : Type v} (f : α ≃. β) :
            f.trans (PEquiv.refl β) = f
            theorem PEquiv.inj {α : Type u} {β : Type v} (f : α ≃. β) {a₁ : α} {a₂ : α} {b : β} (h₁ : b f a₁) (h₂ : b f a₂) :
            a₁ = a₂
            theorem PEquiv.injective_of_forall_ne_isSome {α : Type u} {β : Type v} (f : α ≃. β) (a₂ : α) (h : ∀ (a₁ : α), a₁ a₂(f a₁).isSome = true) :

            If the domain of a PEquiv is α except a point, its forward direction is injective.

            theorem PEquiv.injective_of_forall_isSome {α : Type u} {β : Type v} {f : α ≃. β} (h : ∀ (a : α), (f a).isSome = true) :

            If the domain of a PEquiv is all of α, its forward direction is injective.

            def PEquiv.ofSet {α : Type u} (s : Set α) [DecidablePred fun (x : α) => x s] :
            α ≃. α

            Creates a PEquiv that is the identity on s, and none outside of it.

            Equations
            • PEquiv.ofSet s = { toFun := fun (a : α) => if a s then some a else none, invFun := fun (a : α) => if a s then some a else none, inv := }
            Instances For
              theorem PEquiv.mem_ofSet_self_iff {α : Type u} {s : Set α} [DecidablePred fun (x : α) => x s] {a : α} :
              a (PEquiv.ofSet s) a a s
              theorem PEquiv.mem_ofSet_iff {α : Type u} {s : Set α} [DecidablePred fun (x : α) => x s] {a : α} {b : α} :
              a (PEquiv.ofSet s) b a = b a s
              @[simp]
              theorem PEquiv.ofSet_eq_some_iff {α : Type u} {s : Set α} :
              ∀ {x : DecidablePred fun (x : α) => x s} {a b : α}, (PEquiv.ofSet s) b = some a a = b a s
              theorem PEquiv.ofSet_eq_some_self_iff {α : Type u} {s : Set α} :
              ∀ {x : DecidablePred fun (x : α) => x s} {a : α}, (PEquiv.ofSet s) a = some a a s
              @[simp]
              theorem PEquiv.ofSet_symm {α : Type u} (s : Set α) [DecidablePred fun (x : α) => x s] :
              @[simp]
              theorem PEquiv.ofSet_univ {α : Type u} :
              @[simp]
              theorem PEquiv.ofSet_eq_refl {α : Type u} {s : Set α} [DecidablePred fun (x : α) => x s] :
              PEquiv.ofSet s = PEquiv.refl α s = Set.univ
              theorem PEquiv.symm_trans_rev {α : Type u} {β : Type v} {γ : Type w} (f : α ≃. β) (g : β ≃. γ) :
              (f.trans g).symm = g.symm.trans f.symm
              theorem PEquiv.self_trans_symm {α : Type u} {β : Type v} (f : α ≃. β) :
              f.trans f.symm = PEquiv.ofSet {a : α | (f a).isSome = true}
              theorem PEquiv.symm_trans_self {α : Type u} {β : Type v} (f : α ≃. β) :
              f.symm.trans f = PEquiv.ofSet {b : β | (f.symm b).isSome = true}
              theorem PEquiv.trans_symm_eq_iff_forall_isSome {α : Type u} {β : Type v} {f : α ≃. β} :
              f.trans f.symm = PEquiv.refl α ∀ (a : α), (f a).isSome = true
              instance PEquiv.instBotPEquiv {α : Type u} {β : Type v} :
              Bot (α ≃. β)
              Equations
              • PEquiv.instBotPEquiv = { bot := { toFun := fun (x : α) => none, invFun := fun (x : β) => none, inv := } }
              instance PEquiv.instInhabited {α : Type u} {β : Type v} :
              Inhabited (α ≃. β)
              Equations
              • PEquiv.instInhabited = { default := }
              @[simp]
              theorem PEquiv.bot_apply {α : Type u} {β : Type v} (a : α) :
              a = none
              @[simp]
              theorem PEquiv.symm_bot {α : Type u} {β : Type v} :
              .symm =
              @[simp]
              theorem PEquiv.trans_bot {α : Type u} {β : Type v} {γ : Type w} (f : α ≃. β) :
              f.trans =
              @[simp]
              theorem PEquiv.bot_trans {α : Type u} {β : Type v} {γ : Type w} (f : β ≃. γ) :
              .trans f =
              theorem PEquiv.isSome_symm_get {α : Type u} {β : Type v} (f : α ≃. β) {a : α} (h : (f a).isSome = true) :
              (f.symm ((f a).get h)).isSome = true
              def PEquiv.single {α : Type u} {β : Type v} [DecidableEq α] [DecidableEq β] (a : α) (b : β) :
              α ≃. β

              Create a PEquiv which sends a to b and b to a, but is otherwise none.

              Equations
              • PEquiv.single a b = { toFun := fun (x : α) => if x = a then some b else none, invFun := fun (x : β) => if x = b then some a else none, inv := }
              Instances For
                theorem PEquiv.mem_single {α : Type u} {β : Type v} [DecidableEq α] [DecidableEq β] (a : α) (b : β) :
                b (PEquiv.single a b) a
                theorem PEquiv.mem_single_iff {α : Type u} {β : Type v} [DecidableEq α] [DecidableEq β] (a₁ : α) (a₂ : α) (b₁ : β) (b₂ : β) :
                b₁ (PEquiv.single a₂ b₂) a₁ a₁ = a₂ b₁ = b₂
                @[simp]
                theorem PEquiv.symm_single {α : Type u} {β : Type v} [DecidableEq α] [DecidableEq β] (a : α) (b : β) :
                @[simp]
                theorem PEquiv.single_apply {α : Type u} {β : Type v} [DecidableEq α] [DecidableEq β] (a : α) (b : β) :
                (PEquiv.single a b) a = some b
                theorem PEquiv.single_apply_of_ne {α : Type u} {β : Type v} [DecidableEq α] [DecidableEq β] {a₁ : α} {a₂ : α} (h : a₁ a₂) (b : β) :
                (PEquiv.single a₁ b) a₂ = none
                theorem PEquiv.single_trans_of_mem {α : Type u} {β : Type v} {γ : Type w} [DecidableEq α] [DecidableEq β] [DecidableEq γ] (a : α) {b : β} {c : γ} {f : β ≃. γ} (h : c f b) :
                (PEquiv.single a b).trans f = PEquiv.single a c
                theorem PEquiv.trans_single_of_mem {α : Type u} {β : Type v} {γ : Type w} [DecidableEq α] [DecidableEq β] [DecidableEq γ] {a : α} {b : β} (c : γ) {f : α ≃. β} (h : b f a) :
                f.trans (PEquiv.single b c) = PEquiv.single a c
                @[simp]
                theorem PEquiv.single_trans_single {α : Type u} {β : Type v} {γ : Type w} [DecidableEq α] [DecidableEq β] [DecidableEq γ] (a : α) (b : β) (c : γ) :
                @[simp]
                theorem PEquiv.single_subsingleton_eq_refl {α : Type u} [DecidableEq α] [Subsingleton α] (a : α) (b : α) :
                theorem PEquiv.trans_single_of_eq_none {β : Type v} {γ : Type w} {δ : Type x} [DecidableEq β] [DecidableEq γ] {b : β} (c : γ) {f : δ ≃. β} (h : f.symm b = none) :
                f.trans (PEquiv.single b c) =
                theorem PEquiv.single_trans_of_eq_none {α : Type u} {β : Type v} {δ : Type x} [DecidableEq α] [DecidableEq β] (a : α) {b : β} {f : β ≃. δ} (h : f b = none) :
                (PEquiv.single a b).trans f =
                theorem PEquiv.single_trans_single_of_ne {α : Type u} {β : Type v} {γ : Type w} [DecidableEq α] [DecidableEq β] [DecidableEq γ] {b₁ : β} {b₂ : β} (h : b₁ b₂) (a : α) (c : γ) :
                (PEquiv.single a b₁).trans (PEquiv.single b₂ c) =
                instance PEquiv.instPartialOrderPEquiv {α : Type u} {β : Type v} :
                Equations
                theorem PEquiv.le_def {α : Type u} {β : Type v} {f : α ≃. β} {g : α ≃. β} :
                f g ∀ (a : α), bf a, b g a
                instance PEquiv.instOrderBot {α : Type u} {β : Type v} :
                OrderBot (α ≃. β)
                Equations
                Equations
                def Equiv.toPEquiv {α : Type u_1} {β : Type u_2} (f : α β) :
                α ≃. β

                Turns an Equiv into a PEquiv of the whole type.

                Equations
                • f.toPEquiv = { toFun := some f, invFun := some f.symm, inv := }
                Instances For
                  @[simp]
                  theorem Equiv.toPEquiv_refl {α : Type u_1} :
                  (Equiv.refl α).toPEquiv = PEquiv.refl α
                  theorem Equiv.toPEquiv_trans {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α β) (g : β γ) :
                  (f.trans g).toPEquiv = f.toPEquiv.trans g.toPEquiv
                  theorem Equiv.toPEquiv_symm {α : Type u_1} {β : Type u_2} (f : α β) :
                  f.symm.toPEquiv = f.toPEquiv.symm
                  theorem Equiv.toPEquiv_apply {α : Type u_1} {β : Type u_2} (f : α β) (x : α) :
                  f.toPEquiv x = some (f x)