Superfactorial #
This file defines the superfactorial
sf n = 1! * 2! * 3! * ... * n!
.
Main declarations #
Nat.superFactorial
: The superfactorial, denoted bysf
.
Nat.superFactorial n
is the superfactorial of n
.
Equations
- Nat.superFactorial 0 = 1
- n.succ.superFactorial = n.succ.factorial * n.superFactorial
Instances For
sf
notation for superfactorial
Equations
- Nat.termSf_ = Lean.ParserDescr.node `Nat.termSf_ 1022 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "sf") (Lean.ParserDescr.cat `term 60))
Instances For
@[simp]
@[simp]
theorem
Nat.prod_range_factorial_succ
(n : ℕ)
:
∏ x ∈ Finset.range n, (x + 1).factorial = n.superFactorial
@[simp]
theorem
Nat.prod_range_succ_factorial
(n : ℕ)
:
∏ x ∈ Finset.range (n + 1), x.factorial = n.superFactorial
theorem
Nat.det_vandermonde_id_eq_superFactorial
{R : Type u_1}
[CommRing R]
(n : ℕ)
:
(Matrix.vandermonde fun (i : Fin (n + 1)) => ↑↑i).det = ↑n.superFactorial
theorem
Nat.superFactorial_dvd_vandermonde_det
{n : ℕ}
(v : Fin (n + 1) → ℤ)
:
↑n.superFactorial ∣ (Matrix.vandermonde v).det