Documentation

Mathlib.Data.Matroid.Rank.ENat

ℕ∞-valued rank #

If the 'cardinality' of s : Set α is taken to mean the ℕ∞-valued term Set.encard s, then all bases of any M : Matroid α have the same cardinality, and for each X : Set α with X ⊆ M.E, all M-bases for X have the same cardinality. The 'rank' of a matroid is the cardinality of all its bases, and the 'rank' of a set X in a matroid M is the cardinality of each M-basis of X. This file defines these two concepts as a term Matroid.eRank M : ℕ∞ and a function Matroid.eRk M : Set α → ℕ∞ respectively.

The rank function Matroid.eRk satisfies three properties, often known as (R1), (R2), (R3):

Main Declarations #

Notes #

It is natural to ask if equicardinality of bases holds if 'cardinality' refers to a term in Cardinal instead of ℕ∞, but the answer is that it doesn't. The cardinal-valued rank functions Matroid.cRank and Matroid.cRk are defined in Data.Matroid.Rank.Cardinal, but have less desirable properties in general. See the module docstring of that file for a discussion.

Implementation Details #

It would be equivalent to define Matroid.eRank (M : Matroid α) := (Matroid.cRank M).toENat and similar for Matroid.eRk, and some of the API for cRank/cRk would carry over in a way that shortens certain proofs in this file (though not substantially). Although this file transitively imports Cardinal via Set.encard, there are plans to refactor the latter to be independent of the former, which would carry over to the current version of this file.

noncomputable def Matroid.eRank {α : Type u_1} (M : Matroid α) :

The rank Matroid.eRank M of M is the ℕ∞-valued cardinality of each base of M. (See Matroid.cRank for a worse-behaved cardinal-valued version)

Equations
Instances For
    noncomputable def Matroid.eRk {α : Type u_1} (M : Matroid α) (X : Set α) :

    The rank Matroid.eRk M X of a set X is the ℕ∞-valued cardinality of each basis of X. (See Matroid.cRk for a worse-behaved cardinal-valued version)

    Equations
    Instances For
      theorem Matroid.eRank_def {α : Type u_1} (M : Matroid α) :
      M.eRank = M.eRk M.E
      @[simp]
      theorem Matroid.eRank_restrict {α : Type u_1} (M : Matroid α) (X : Set α) :
      (M.restrict X).eRank = M.eRk X
      theorem Matroid.IsBase.encard_eq_eRank {α : Type u_1} {M : Matroid α} {B : Set α} (hB : M.IsBase B) :
      theorem Matroid.IsBasis'.encard_eq_eRk {α : Type u_1} {M : Matroid α} {I X : Set α} (hI : M.IsBasis' I X) :
      I.encard = M.eRk X
      theorem Matroid.IsBasis.encard_eq_eRk {α : Type u_1} {M : Matroid α} {I X : Set α} (hI : M.IsBasis I X) :
      I.encard = M.eRk X
      theorem Matroid.eq_eRk_iff {α : Type u_1} {M : Matroid α} {X : Set α} {n : ℕ∞} (hX : X M.E := by aesop_mat) :
      M.eRk X = n ∃ (I : Set α), M.IsBasis I X I.encard = n
      theorem Matroid.Indep.eRk_eq_encard {α : Type u_1} {M : Matroid α} {I : Set α} (hI : M.Indep I) :
      M.eRk I = I.encard
      theorem Matroid.IsBasis'.eRk_eq_eRk {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis' I X) :
      M.eRk I = M.eRk X
      theorem Matroid.IsBasis.eRk_eq_eRk {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis I X) :
      M.eRk I = M.eRk X
      theorem Matroid.IsBasis'.eRk_eq_encard {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis' I X) :
      M.eRk X = I.encard
      theorem Matroid.IsBasis.eRk_eq_encard {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis I X) :
      M.eRk X = I.encard
      theorem Matroid.IsBase.eRk_eq_eRank {α : Type u_1} {M : Matroid α} {B : Set α} (hB : M.IsBase B) :
      M.eRk B = M.eRank
      @[simp]
      theorem Matroid.eRank_map {α : Type u_1} {β : Type u_2} (M : Matroid α) (f : αβ) (hf : Set.InjOn f M.E) :
      (M.map f hf).eRank = M.eRank
      @[simp]
      theorem Matroid.eRank_loopyOn {α : Type u_1} (E : Set α) :
      @[simp]
      theorem Matroid.eRank_emptyOn (α : Type u_2) :
      (emptyOn α).eRank = 0
      @[simp]
      theorem Matroid.eRk_ground {α : Type u_1} (M : Matroid α) :
      M.eRk M.E = M.eRank
      @[simp]
      theorem Matroid.eRk_inter_ground {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk (X M.E) = M.eRk X
      @[simp]
      theorem Matroid.eRk_ground_inter {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk (M.E X) = M.eRk X
      theorem Matroid.eRk_eq_eRank {α : Type u_1} {M : Matroid α} {X : Set α} (hX : M.E X) :
      M.eRk X = M.eRank
      @[simp]
      theorem Matroid.eRk_union_ground {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk (X M.E) = M.eRank
      @[simp]
      theorem Matroid.eRk_ground_union {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk (M.E X) = M.eRank
      theorem Matroid.eRk_insert_of_not_mem_ground {α : Type u_1} {M : Matroid α} {e : α} (X : Set α) (he : eM.E) :
      M.eRk (insert e X) = M.eRk X
      theorem Matroid.eRk_compl_union_of_disjoint {α : Type u_1} {X Y : Set α} (M : Matroid α) (hXY : Disjoint X Y) :
      M.eRk (M.E \ X Y) = M.eRk (M.E \ X)
      theorem Matroid.one_le_eRank {α : Type u_1} (M : Matroid α) [M.RankPos] :
      @[simp]
      theorem Matroid.eRank_eq_top {α : Type u_1} {M : Matroid α} [M.RankInfinite] :
      @[simp]
      theorem Matroid.eRk_map_eq {α : Type u_1} {X : Set α} {β : Type u_2} {f : αβ} (M : Matroid α) (hf : Set.InjOn f M.E) (hX : X M.E := by aesop_mat) :
      (M.map f hf).eRk (f '' X) = M.eRk X
      @[simp]
      theorem Matroid.eRk_comap_eq {α : Type u_1} {β : Type u_2} {f : αβ} (M : Matroid β) (X : Set α) :
      (M.comap f).eRk X = M.eRk (f '' X)
      @[simp]
      theorem Matroid.eRk_univ_eq {α : Type u_1} (M : Matroid α) :
      @[simp]
      theorem Matroid.eRk_empty {α : Type u_1} (M : Matroid α) :
      M.eRk = 0
      @[simp]
      theorem Matroid.eRk_closure_eq {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk (M.closure X) = M.eRk X
      @[simp]
      theorem Matroid.eRk_union_closure_right_eq {α : Type u_1} (M : Matroid α) (X Y : Set α) :
      M.eRk (X M.closure Y) = M.eRk (X Y)
      @[simp]
      theorem Matroid.eRk_union_closure_left_eq {α : Type u_1} (M : Matroid α) (X Y : Set α) :
      M.eRk (M.closure X Y) = M.eRk (X Y)
      @[simp]
      theorem Matroid.eRk_insert_closure_eq {α : Type u_1} (M : Matroid α) (e : α) (X : Set α) :
      M.eRk (insert e (M.closure X)) = M.eRk (insert e X)
      @[simp]
      theorem Matroid.restrict_eRk_eq' {α : Type u_1} (M : Matroid α) (R X : Set α) :
      (M.restrict R).eRk X = M.eRk (X R)

      A version of Matroid.restrict_eRk_eq with no X ⊆ R hypothesis and thus a less simple RHS.

      theorem Matroid.restrict_eRk_eq {α : Type u_1} {X : Set α} (M : Matroid α) {R : Set α} (h : X R) :
      (M.restrict R).eRk X = M.eRk X
      theorem Matroid.eRk_lt_top_of_finite {α : Type u_1} {X : Set α} (M : Matroid α) (hX : X.Finite) :
      M.eRk X <
      theorem Matroid.IsBasis'.eRk_eq_eRk_union {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis' I X) (Y : Set α) :
      M.eRk (I Y) = M.eRk (X Y)
      theorem Matroid.IsBasis'.eRk_eq_eRk_insert {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis' I X) (e : α) :
      M.eRk (insert e I) = M.eRk (insert e X)
      theorem Matroid.IsBasis.eRk_eq_eRk_union {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis I X) (Y : Set α) :
      M.eRk (I Y) = M.eRk (X Y)
      theorem Matroid.IsBasis.eRk_eq_eRk_insert {α : Type u_1} {M : Matroid α} {I X : Set α} (hIX : M.IsBasis I X) (e : α) :
      M.eRk (insert e I) = M.eRk (insert e X)
      theorem Matroid.eRk_le_encard {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk X X.encard
      theorem Matroid.eRk_mono {α : Type u_1} (M : Matroid α) :
      theorem Matroid.eRk_le_eRank {α : Type u_1} (M : Matroid α) (X : Set α) :
      M.eRk X M.eRank
      theorem Matroid.le_eRk_iff {α : Type u_1} {M : Matroid α} {X : Set α} {n : ℕ∞} :
      n M.eRk X IX, M.Indep I I.encard = n
      theorem Matroid.eRk_le_iff {α : Type u_1} {M : Matroid α} {X : Set α} {n : ℕ∞} :
      M.eRk X n ∀ ⦃I : Set α⦄, I XM.Indep II.encard n
      theorem Matroid.Indep.encard_le_eRk_of_subset {α : Type u_1} {M : Matroid α} {I X : Set α} (hI : M.Indep I) (hIX : I X) :
      I.encard M.eRk X
      theorem Matroid.Indep.encard_le_eRank {α : Type u_1} {M : Matroid α} {I : Set α} (hI : M.Indep I) :
      theorem Matroid.eRk_inter_add_eRk_union_le {α : Type u_1} (M : Matroid α) (X Y : Set α) :
      M.eRk (X Y) + M.eRk (X Y) M.eRk X + M.eRk Y

      The ℕ∞-valued rank function is submodular.

      theorem Matroid.eRk_submod {α : Type u_1} (M : Matroid α) (X Y : Set α) :
      M.eRk (X Y) + M.eRk (X Y) M.eRk X + M.eRk Y

      Alias of Matroid.eRk_inter_add_eRk_union_le.


      The ℕ∞-valued rank function is submodular.