Absolute values and the integers #
This file contains some results on absolute values applied to integers.
Main results #
AbsoluteValue.map_units_int
: an absolute value sends all units ofℤ
to1
Int.natAbsHom
:Int.natAbs
bundled as aMonoidWithZeroHom
@[simp]
theorem
AbsoluteValue.map_units_int
{S : Type u_2}
[LinearOrderedCommRing S]
(abv : AbsoluteValue ℤ S)
(x : ℤˣ)
:
abv ↑x = 1
@[simp]
theorem
AbsoluteValue.map_units_intCast
{R : Type u_1}
{S : Type u_2}
[Ring R]
[LinearOrderedCommRing S]
[Nontrivial R]
(abv : AbsoluteValue R S)
(x : ℤˣ)
:
abv ↑↑x = 1
@[deprecated AbsoluteValue.map_units_intCast]
theorem
AbsoluteValue.map_units_int_cast
{R : Type u_1}
{S : Type u_2}
[Ring R]
[LinearOrderedCommRing S]
[Nontrivial R]
(abv : AbsoluteValue R S)
(x : ℤˣ)
:
abv ↑↑x = 1
Alias of AbsoluteValue.map_units_intCast
.
@[simp]
theorem
AbsoluteValue.map_units_int_smul
{R : Type u_1}
{S : Type u_2}
[Ring R]
[LinearOrderedCommRing S]
(abv : AbsoluteValue R S)
(x : ℤˣ)
(y : R)
:
Int.natAbs
as a bundled monoid with zero hom.
Equations
- Int.natAbsHom = { toFun := Int.natAbs, map_zero' := Int.natAbs_zero, map_one' := Int.natAbs_one, map_mul' := Int.natAbs_mul }