Documentation

Mathlib.Data.Finsupp.Interval

Finite intervals of finitely supported functions #

This file provides the LocallyFiniteOrder instance for ι →₀ α when α itself is locally finite and calculates the cardinality of its finite intervals.

Main declarations #

Both these definitions use the fact that 0 = {0} to ensure that the resulting function is finitely supported.

def Finsupp.rangeSingleton {ι : Type u_1} {α : Type u_2} [Zero α] (f : ι →₀ α) :

Pointwise Singleton.singleton bundled as a Finsupp.

Equations
  • f.rangeSingleton = { support := f.support, toFun := fun (i : ι) => {f i}, mem_support_toFun := }
Instances For
    @[simp]
    theorem Finsupp.rangeSingleton_support {ι : Type u_1} {α : Type u_2} [Zero α] (f : ι →₀ α) :
    f.rangeSingleton.support = f.support
    @[simp]
    theorem Finsupp.rangeSingleton_toFun {ι : Type u_1} {α : Type u_2} [Zero α] (f : ι →₀ α) (i : ι) :
    f.rangeSingleton i = {f i}
    theorem Finsupp.mem_rangeSingleton_apply_iff {ι : Type u_1} {α : Type u_2} [Zero α] {f : ι →₀ α} {i : ι} {a : α} :
    a f.rangeSingleton i a = f i
    def Finsupp.rangeIcc {ι : Type u_1} {α : Type u_2} [Zero α] [PartialOrder α] [LocallyFiniteOrder α] (f g : ι →₀ α) :

    Pointwise Finset.Icc bundled as a Finsupp.

    Equations
    • f.rangeIcc g = { support := f.support g.support, toFun := fun (i : ι) => Finset.Icc (f i) (g i), mem_support_toFun := }
    Instances For
      @[simp]
      theorem Finsupp.rangeIcc_toFun {ι : Type u_1} {α : Type u_2} [Zero α] [PartialOrder α] [LocallyFiniteOrder α] (f g : ι →₀ α) (i : ι) :
      (f.rangeIcc g) i = Finset.Icc (f i) (g i)
      theorem Finsupp.coe_rangeIcc {ι : Type u_1} {α : Type u_2} [Zero α] [PartialOrder α] [LocallyFiniteOrder α] {i : ι} (f g : ι →₀ α) :
      (f.rangeIcc g) i = Finset.Icc (f i) (g i)
      @[simp]
      theorem Finsupp.rangeIcc_support {ι : Type u_1} {α : Type u_2} [Zero α] [PartialOrder α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      (f.rangeIcc g).support = f.support g.support
      theorem Finsupp.mem_rangeIcc_apply_iff {ι : Type u_1} {α : Type u_2} [Zero α] [PartialOrder α] [LocallyFiniteOrder α] {f g : ι →₀ α} {i : ι} {a : α} :
      a (f.rangeIcc g) i f i a a g i
      Equations
      theorem Finsupp.Icc_eq {ι : Type u_1} {α : Type u_2} [PartialOrder α] [Zero α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      Finset.Icc f g = (f.support g.support).finsupp (f.rangeIcc g)
      theorem Finsupp.card_Icc {ι : Type u_1} {α : Type u_2} [PartialOrder α] [Zero α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      (Finset.Icc f g).card = if.support g.support, (Finset.Icc (f i) (g i)).card
      theorem Finsupp.card_Ico {ι : Type u_1} {α : Type u_2} [PartialOrder α] [Zero α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      (Finset.Ico f g).card = if.support g.support, (Finset.Icc (f i) (g i)).card - 1
      theorem Finsupp.card_Ioc {ι : Type u_1} {α : Type u_2} [PartialOrder α] [Zero α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      (Finset.Ioc f g).card = if.support g.support, (Finset.Icc (f i) (g i)).card - 1
      theorem Finsupp.card_Ioo {ι : Type u_1} {α : Type u_2} [PartialOrder α] [Zero α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      (Finset.Ioo f g).card = if.support g.support, (Finset.Icc (f i) (g i)).card - 2
      theorem Finsupp.card_uIcc {ι : Type u_1} {α : Type u_2} [Lattice α] [Zero α] [LocallyFiniteOrder α] (f g : ι →₀ α) :
      (Finset.uIcc f g).card = if.support g.support, (Finset.uIcc (f i) (g i)).card
      theorem Finsupp.card_Iic {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [LocallyFiniteOrder α] (f : ι →₀ α) :
      (Finset.Iic f).card = if.support, (Finset.Iic (f i)).card
      theorem Finsupp.card_Iio {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [PartialOrder α] [CanonicallyOrderedAdd α] [LocallyFiniteOrder α] (f : ι →₀ α) :
      (Finset.Iio f).card = if.support, (Finset.Iic (f i)).card - 1