LawfulTraversable instances #
This file provides instances of LawfulTraversable
for types from the core library: Option
,
List
and Sum
.
theorem
Option.comp_traverse
{F : Type u → Type u}
{G : Type u → Type u}
[Applicative F]
[Applicative G]
[LawfulApplicative G]
{α : Type u_1}
{β : Type u}
{γ : Type u}
(f : β → F γ)
(g : α → G β)
(x : Option α)
:
Option.traverse (Functor.Comp.mk ∘ (fun (x : G β) => f <$> x) ∘ g) x = Functor.Comp.mk (Option.traverse f <$> Option.traverse g x)
theorem
Option.traverse_eq_map_id
{α : Type u_1}
{β : Type u_1}
(f : α → β)
(x : Option α)
:
Option.traverse (pure ∘ f) x = pure (f <$> x)
theorem
Option.naturality
{F : Type u → Type u}
{G : Type u → Type u}
[Applicative F]
[Applicative G]
[LawfulApplicative G]
(η : ApplicativeTransformation F G)
[LawfulApplicative F]
{α : Type u_1}
{β : Type u}
(f : α → F β)
(x : Option α)
:
(fun {α : Type u} => η.app α) (Option.traverse f x) = Option.traverse ((fun {α : Type u} => η.app α) ∘ f) x
Equations
theorem
List.comp_traverse
{F : Type u → Type u}
{G : Type u → Type u}
[Applicative F]
[Applicative G]
[LawfulApplicative G]
{α : Type u_1}
{β : Type u}
{γ : Type u}
(f : β → F γ)
(g : α → G β)
(x : List α)
:
List.traverse (Functor.Comp.mk ∘ (fun (x : G β) => f <$> x) ∘ g) x = Functor.Comp.mk (List.traverse f <$> List.traverse g x)
theorem
List.traverse_eq_map_id
{α : Type u_1}
{β : Type u_1}
(f : α → β)
(x : List α)
:
List.traverse (pure ∘ f) x = pure (f <$> x)
theorem
List.naturality
{F : Type u → Type u}
{G : Type u → Type u}
[Applicative F]
[Applicative G]
[LawfulApplicative G]
[LawfulApplicative F]
(η : ApplicativeTransformation F G)
{α : Type u_1}
{β : Type u}
(f : α → F β)
(x : List α)
:
(fun {α : Type u} => η.app α) (List.traverse f x) = List.traverse ((fun {α : Type u} => η.app α) ∘ f) x
Equations
@[simp]
theorem
List.traverse_nil
{F : Type u → Type u}
[Applicative F]
{α' : Type u}
{β' : Type u}
(f : α' → F β')
:
theorem
Sum.traverse_map
{σ : Type u}
{G : Type u → Type u}
[Applicative G]
{α : Type u}
{β : Type u}
{γ : Type u}
(g : α → β)
(f : β → G γ)
(x : σ ⊕ α)
:
Sum.traverse f (g <$> x) = Sum.traverse (f ∘ g) x
theorem
Sum.comp_traverse
{σ : Type u}
{F : Type u → Type u}
{G : Type u → Type u}
[Applicative F]
[Applicative G]
[LawfulApplicative G]
{α : Type u}
{β : Type u}
{γ : Type u}
(f : β → F γ)
(g : α → G β)
(x : σ ⊕ α)
:
Sum.traverse (Functor.Comp.mk ∘ (fun (x : G β) => f <$> x) ∘ g) x = Functor.Comp.mk (Sum.traverse f <$> Sum.traverse g x)
theorem
Sum.map_traverse
{σ : Type u}
{G : Type u → Type u}
[Applicative G]
[LawfulApplicative G]
{α : Type u_1}
{β : Type u}
{γ : Type u}
(g : α → G β)
(f : β → γ)
(x : σ ⊕ α)
:
(fun (x : σ ⊕ β) => f <$> x) <$> Sum.traverse g x = Sum.traverse (fun (x : α) => f <$> g x) x
theorem
Sum.naturality
{σ : Type u}
{F : Type u → Type u}
{G : Type u → Type u}
[Applicative F]
[Applicative G]
[LawfulApplicative G]
[LawfulApplicative F]
(η : ApplicativeTransformation F G)
{α : Type u_1}
{β : Type u}
(f : α → F β)
(x : σ ⊕ α)
:
(fun {α : Type u} => η.app α) (Sum.traverse f x) = Sum.traverse ((fun {α : Type u} => η.app α) ∘ f) x