Bitraversable type class #
Type class for traversing bifunctors.
Simple examples of Bitraversable
are Prod
and Sum
. A more elaborate example is
to define an a-list as:
def AList (key val : Type) := List (key × val)
Then we can use f : key → IO key'
and g : val → IO val'
to manipulate the AList
's key
and value respectively with Bitraverse f g : AList key val → IO (AList key' val')
.
Main definitions #
Bitraversable
: Bare typeclass to hold theBitraverse
function.LawfulBitraversable
: Typeclass for the laws of theBitraverse
function. Similar toLawfulTraversable
.
References #
The concepts and laws are taken from https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bitraversable.html
Tags #
traversable bitraversable iterator functor bifunctor applicative
Lawless bitraversable bifunctor. This only holds data for the bimap and bitraverse.
- bimap : {α α' β β' : Type u} → (α → α') → (β → β') → t α β → t α' β'
- bitraverse : {m : Type u → Type u} → [inst : Applicative m] → {α α' β β' : Type u} → (α → m α') → (β → m β') → t α β → m (t α' β')
Instances
def
bisequence
{t : Type u_1 → Type u_1 → Type u_1}
{m : Type u_1 → Type u_1}
[Bitraversable t]
[Applicative m]
{α : Type u_1}
{β : Type u_1}
:
t (m α) (m β) → m (t α β)
A bitraversable functor commutes with all applicative functors.
Equations
- bisequence = bitraverse id id
Instances For
class
LawfulBitraversable
(t : Type u → Type u → Type u)
[Bitraversable t]
extends
LawfulBifunctor
:
Bifunctor. This typeclass asserts that a lawless bitraversable bifunctor is lawful.
- id_bitraverse : ∀ {α β : Type u} (x : t α β), bitraverse pure pure x = pure x
- comp_bitraverse : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] {α α' β β' γ γ' : Type u} (f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'), bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x = Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x)
- binaturality : ∀ {F G : Type u → Type u} [inst : Applicative F] [inst_1 : Applicative G] [inst_2 : LawfulApplicative F] [inst_3 : LawfulApplicative G] (η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : t α α'), (fun {α : Type u} => η.app α) (bitraverse f f' x) = bitraverse ((fun {α : Type u} => η.app α) ∘ f) ((fun {α : Type u} => η.app α) ∘ f') x
Instances
theorem
LawfulBitraversable.id_bitraverse
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {α β : Type u} (x : t α β), bitraverse pure pure x = pure x
theorem
LawfulBitraversable.comp_bitraverse
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {F G : Type u → Type u} [inst_1 : Applicative F]
[inst_2 : Applicative G] [inst_3 : LawfulApplicative F] [inst_4 : LawfulApplicative G] {α α' β β' γ γ' : Type u}
(f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β') (x : t α α'),
bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') x = Functor.Comp.mk (bitraverse f f' <$> bitraverse g g' x)
theorem
LawfulBitraversable.bitraverse_eq_bimap_id
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {α α' β β' : Type u} (f : α → β) (f' : α' → β') (x : t α α'),
bitraverse (pure ∘ f) (pure ∘ f') x = pure (bimap f f' x)
theorem
LawfulBitraversable.binaturality
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {F G : Type u → Type u} [inst_1 : Applicative F]
[inst_2 : Applicative G] [inst_3 : LawfulApplicative F] [inst_4 : LawfulApplicative G]
(η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β') (x : t α α'),
(fun {α : Type u} => η.app α) (bitraverse f f' x) = bitraverse ((fun {α : Type u} => η.app α) ∘ f) ((fun {α : Type u} => η.app α) ∘ f') x
theorem
LawfulBitraversable.bitraverse_id_id
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {α β : Type u}, bitraverse pure pure = pure
theorem
LawfulBitraversable.bitraverse_comp
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {F G : Type u → Type u} [inst_1 : Applicative F]
[inst_2 : Applicative G] [inst_3 : LawfulApplicative F] [inst_4 : LawfulApplicative G] {α α' β β' γ γ' : Type u}
(f : β → F γ) (f' : β' → F γ') (g : α → G β) (g' : α' → G β'),
bitraverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (Functor.Comp.mk ∘ Functor.map f' ∘ g') = Functor.Comp.mk ∘ Functor.map (bitraverse f f') ∘ bitraverse g g'
theorem
LawfulBitraversable.binaturality'
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {F G : Type u → Type u} [inst_1 : Applicative F]
[inst_2 : Applicative G] [inst_3 : LawfulApplicative F] [inst_4 : LawfulApplicative G]
(η : ApplicativeTransformation F G) {α α' β β' : Type u} (f : α → F β) (f' : α' → F β'),
(fun {α : Type u} => η.app α) ∘ bitraverse f f' = bitraverse ((fun {α : Type u} => η.app α) ∘ f) ((fun {α : Type u} => η.app α) ∘ f')
theorem
LawfulBitraversable.bitraverse_eq_bimap_id'
{t : Type u → Type u → Type u}
:
∀ {inst : Bitraversable t} [self : LawfulBitraversable t] {α α' β β' : Type u} (f : α → β) (f' : α' → β'),
bitraverse (pure ∘ f) (pure ∘ f') = pure ∘ bimap f f'