Solid modules #
This file contains the definition of a solid R
-module: CondensedMod.isSolid R
. Solid modules
groups were introduced in [scholze2019condensed], Definition 5.1.
Main definition #
CondensedMod.IsSolid R
: the predicate on condensedR
-modules describing the property of being solid.
TODO (hard): prove that ((profiniteSolid ℤ).obj S).IsSolid
for S : Profinite
.
TODO (slightly easier): prove that ((profiniteSolid 𝔽ₚ).obj S).IsSolid
for S : Profinite
.
The free condensed abelian group on a finite set.
Equations
- Condensed.finFree R = FintypeCat.toProfinite.comp (profiniteToCondensed.comp (Condensed.free R))
Instances For
The free condensed abelian group on a profinite space.
Equations
Instances For
The functor sending a profinite space S
to the condensed abelian group R[S]^\solid
.
Equations
- Condensed.profiniteSolid R = FintypeCat.toProfinite.rightKanExtension (Condensed.finFree R)
Instances For
The natural transformation FintypeCat.toProfinite ⋙ profiniteSolid R ⟶ finFree R
which is part of the assertion that profiniteSolid R
is the (pointwise) right
Kan extension of finFree R
along FintypeCat.toProfinite
.
Equations
- Condensed.profiniteSolidCounit R = FintypeCat.toProfinite.rightKanExtensionCounit (Condensed.finFree R)
Instances For
The functor Profinite.{u} ⥤ CondensedMod.{u} R
is a pointwise
right Kan extension of finFree R : FintypeCat.{u} ⥤ CondensedMod.{u} R
along FintypeCat.toProfinite
.
Equations
Instances For
The natural transformation R[S] ⟶ R[S]^\solid
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The predicate on condensed abelian groups describing the property of being solid.
- isIso_solidification_map (X : Profinite) : CategoryTheory.IsIso ((CategoryTheory.yoneda.obj A).map ((Condensed.profiniteSolidification R).app X).op)