Documentation

Mathlib.CategoryTheory.Subpresheaf.Basic

Subpresheaf of types #

We define the subpresheaf of a type valued presheaf.

Main results #

A subpresheaf of a presheaf consists of a subset of F.obj U for every U, compatible with the restriction maps F.map i.

  • obj (U : Cᵒᵖ) : Set (F.obj U)

    If G is a sub-presheaf of F, then the sections of G on U forms a subset of sections of F on U.

  • map {U V : Cᵒᵖ} (i : U V) : self.obj U F.map i ⁻¹' self.obj V

    If G is a sub-presheaf of F and i : U ⟶ V, then for each G-sections on U x, F i x is in F(V).

Instances For
    @[deprecated CategoryTheory.Subpresheaf (since := "2025-01-08")]

    Alias of CategoryTheory.Subpresheaf.


    A subpresheaf of a presheaf consists of a subset of F.obj U for every U, compatible with the restriction maps F.map i.

    Equations
    Instances For

      The subpresheaf as a presheaf.

      Equations
      • G.toPresheaf = { obj := fun (U : Cᵒᵖ) => (G.obj U), map := fun (x x_1 : Cᵒᵖ) (i : x x_1) (x_2 : (G.obj x)) => F.map i x_2, , map_id := , map_comp := }
      Instances For
        @[simp]
        theorem CategoryTheory.Subpresheaf.toPresheaf_map_coe {C : Type u} [CategoryTheory.Category.{v, u} C] {F : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) (x✝ x✝¹ : Cᵒᵖ) (i : x✝ x✝¹) (x : (G.obj x✝)) :
        (G.toPresheaf.map i x) = F.map i x

        The inclusion of a subpresheaf to the original presheaf.

        Equations
        • G = { app := fun (x : Cᵒᵖ) (x_1 : G.toPresheaf.obj x) => x_1, naturality := }
        Instances For
          @[simp]
          theorem CategoryTheory.Subpresheaf.ι_app {C : Type u} [CategoryTheory.Category.{v, u} C] {F : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) (x✝ : Cᵒᵖ) (x : G.toPresheaf.obj x✝) :
          G.app x✝ x = x

          The inclusion of a subpresheaf to a larger subpresheaf

          Equations
          Instances For
            @[simp]
            def CategoryTheory.Subpresheaf.lift {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) (f : F' F) (hf : ∀ (U : Cᵒᵖ) (x : F'.obj U), f.app U x G.obj U) :
            F' G.toPresheaf

            If the image of a morphism falls in a subpresheaf, then the morphism factors through it.

            Equations
            • G.lift f hf = { app := fun (U : Cᵒᵖ) (x : F'.obj U) => f.app U x, , naturality := }
            Instances For
              @[simp]
              theorem CategoryTheory.Subpresheaf.lift_app_coe {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) (f : F' F) (hf : ∀ (U : Cᵒᵖ) (x : F'.obj U), f.app U x G.obj U) (U : Cᵒᵖ) (x : F'.obj U) :
              ((G.lift f hf).app U x) = f.app U x
              @[simp]
              theorem CategoryTheory.Subpresheaf.lift_ι {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) (f : F' F) (hf : ∀ (U : Cᵒᵖ) (x : F'.obj U), f.app U x G.obj U) :

              Given a subpresheaf G of F, an F-section s on U, we may define a sieve of U consisting of all f : V ⟶ U such that the restriction of s along f is in G.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Subpresheaf.sieveOfSection_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {F : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) {U : Cᵒᵖ} (s : F.obj U) (V : C) (f : V Opposite.unop U) :
                (G.sieveOfSection s).arrows f = (F.map f.op s G.obj (Opposite.op V))

                Given an F-section s on U and a subpresheaf G, we may define a family of elements in G consisting of the restrictions of s

                Equations
                • G.familyOfElementsOfSection s i hi = F.map i.op s, hi
                Instances For
                  theorem CategoryTheory.Subpresheaf.family_of_elements_compatible {C : Type u} [CategoryTheory.Category.{v, u} C] {F : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) {U : Cᵒᵖ} (s : F.obj U) :
                  (G.familyOfElementsOfSection s).Compatible
                  theorem CategoryTheory.Subpresheaf.nat_trans_naturality {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (G : CategoryTheory.Subpresheaf F) (f : F' G.toPresheaf) {U V : Cᵒᵖ} (i : U V) (x : F'.obj U) :
                  (f.app V (F'.map i x)) = F.map i (f.app U x)

                  The image presheaf of a morphism, whose components are the set-theoretic images.

                  Equations
                  Instances For

                    A morphism factors through the image presheaf.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.toImagePresheaf_app_coe {C : Type u} [CategoryTheory.Category.{v, u} C] {F F' : CategoryTheory.Functor Cᵒᵖ (Type w)} (f : F' F) (U : Cᵒᵖ) (x : F'.obj U) :
                      ((CategoryTheory.toImagePresheaf f).app U x) = f.app U x