Factoring through subobjects #
The predicate h : P.Factors f
, for P : Subobject Y
and f : X ⟶ Y
asserts the existence of some P.factorThru f : X ⟶ (P : C)
making the obvious diagram commute.
When f : X ⟶ Y
and P : MonoOver Y
,
P.Factors f
expresses that there exists a factorisation of f
through P
.
Given h : P.Factors f
, you can recover the morphism as P.factorThru f h
.
Equations
- P.Factors f = ∃ (g : X ⟶ P.obj.left), CategoryTheory.CategoryStruct.comp g P.arrow = f
Instances For
P.factorThru f h
provides a factorisation of f : X ⟶ Y
through some P : MonoOver Y
,
given the evidence h : P.Factors f
that such a factorisation exists.
Equations
- P.factorThru f h = Classical.choose h
Instances For
When f : X ⟶ Y
and P : Subobject Y
,
P.Factors f
expresses that there exists a factorisation of f
through P
.
Given h : P.Factors f
, you can recover the morphism as P.factorThru f h
.
Equations
- P.Factors f = Quotient.liftOn' P (fun (P : CategoryTheory.MonoOver Y) => P.Factors f) ⋯
Instances For
P.factorThru f h
provides a factorisation of f : X ⟶ Y
through some P : Subobject Y
,
given the evidence h : P.Factors f
that such a factorisation exists.
Equations
- P.factorThru f h = Classical.choose ⋯