Documentation

Mathlib.CategoryTheory.Sites.NonabelianCohomology.H1

The cohomology of a sheaf of groups in degree 1

In this file, we shall define the cohomology in degree 1 of a sheaf of groups (TODO).

Currently, given a presheaf of groups G : Cᵒᵖ ⥤ Grp and a family of objects U : I → C, we define 1-cochains/1-cocycles/H^1 with values in G over U. (This definition neither requires the assumption that G is a sheaf, nor that U covers the terminal object.) As we do not assume that G is a presheaf of abelian groups, this cohomology theory is only defined in low degrees; in the abelian case, it would be a particular case of Čech cohomology (TODO).

TODO #

References #

A zero cochain consists of a family of sections.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.PresheafOfGroups.Cochain₀.mul_apply {C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ₁ γ₂ : CategoryTheory.PresheafOfGroups.ZeroCochain G U) (i : I) :
    (γ₁ * γ₂) i = γ₁ i * γ₂ i
    structure CategoryTheory.PresheafOfGroups.OneCochain {C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) :
    Type (max (max (max u v) w) w')

    A 1-cochain of a presheaf of groups G : Cᵒᵖ ⥤ Grp on a family U : I → C of objects consists of the data of an element in G.obj (Opposite.op T) whenever we have elements i and j in I and maps a : T ⟶ U i and b : T ⟶ U j, and it must satisfy a compatibility with respect to precomposition. (When the binary product of U i and U j exists, this data for all T, a and b corresponds to the data of a section of G on this product.)

    Instances For
      Equations
      @[simp]
      theorem CategoryTheory.PresheafOfGroups.OneCochain.one_ev {C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (i j : I) {T : C} (a : T U i) (b : T U j) :
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem CategoryTheory.PresheafOfGroups.OneCochain.mul_ev {C : Type u} [CategoryTheory.Category.{v, u} C] {G : CategoryTheory.Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ₁ γ₂ : CategoryTheory.PresheafOfGroups.OneCochain G U) (i j : I) {T : C} (a : T U i) (b : T U j) :
      (γ₁ * γ₂).ev i j a b = γ₁.ev i j a b * γ₂.ev i j a b
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem CategoryTheory.PresheafOfGroups.OneCochain.inv_ev {C : Type u} [CategoryTheory.Category.{v, u} C] {G : CategoryTheory.Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ : CategoryTheory.PresheafOfGroups.OneCochain G U) (i j : I) {T : C} (a : T U i) (b : T U j) :
      γ⁻¹.ev i j a b = (γ.ev i j a b)⁻¹

      A 1-cocycle is a 1-cochain which satisfies the cocycle condition.

      Instances For
        @[simp]
        theorem CategoryTheory.PresheafOfGroups.OneCocycle.ev_refl {C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ : CategoryTheory.PresheafOfGroups.OneCocycle G U) (i : I) ⦃T : C (a : T U i) :
        γ.ev i i a a = 1
        theorem CategoryTheory.PresheafOfGroups.OneCocycle.ev_symm {C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) (γ : CategoryTheory.PresheafOfGroups.OneCocycle G U) (i j : I) ⦃T : C (a : T U i) (b : T U j) :
        γ.ev i j a b = (γ.ev j i b a)⁻¹

        The assertion that two cochains in OneCochain G U are cohomologous via an explicit zero-cochain.

        Equations
        Instances For

          The cohomology (equivalence) relation on 1-cocycles.

          Equations
          Instances For
            def CategoryTheory.PresheafOfGroups.H1 {C : Type u} [CategoryTheory.Category.{v, u} C] (G : CategoryTheory.Functor Cᵒᵖ Grp) {I : Type w'} (U : IC) :
            Type (max (max (max u v) w) w')

            The cohomology in degree 1 of a presheaf of groups G : Cᵒᵖ ⥤ Grp on a family of objects U : I → C.

            Equations
            Instances For
              theorem CategoryTheory.PresheafOfGroups.OneCocycle.class_eq_iff {C : Type u} [CategoryTheory.Category.{v, u} C] {G : CategoryTheory.Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} (γ₁ γ₂ : CategoryTheory.PresheafOfGroups.OneCocycle G U) :
              γ₁.class = γ₂.class γ₁.IsCohomologous γ₂
              theorem CategoryTheory.PresheafOfGroups.OneCocycle.IsCohomologous.class_eq {C : Type u} [CategoryTheory.Category.{v, u} C] {G : CategoryTheory.Functor Cᵒᵖ Grp} {I : Type w'} {U : IC} {γ₁ γ₂ : CategoryTheory.PresheafOfGroups.OneCocycle G U} (h : γ₁.IsCohomologous γ₂) :
              γ₁.class = γ₂.class