The site induced by a morphism property #
Let C
be a category with pullbacks and P
be a multiplicative morphism property which is
stable under base change. Then P
induces a pretopology, where coverings are given by presieves
whose elements satisfy P
.
Standard examples of pretopologies in algebraic geometry, such as the étale site, are obtained from this construction by intersecting with the pretopology of surjective families.
def
CategoryTheory.MorphismProperty.pretopology
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasPullbacks C]
(P : CategoryTheory.MorphismProperty C)
[P.IsMultiplicative]
(hPb : P.StableUnderBaseChange)
:
If P
is a multiplicative morphism property which is stable under base change on a category
C
with pullbacks, then P
induces a pretopology, where coverings are given by presieves whose
elements satisfy P
.
Equations
- P.pretopology hPb = { coverings := fun (X : C) (S : CategoryTheory.Presieve X) => ∀ {Y : C} {f : Y ⟶ X}, S f → P f, has_isos := ⋯, pullbacks := ⋯, transitive := ⋯ }
Instances For
@[reducible, inline]
abbrev
CategoryTheory.MorphismProperty.grothendieckTopology
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasPullbacks C]
(P : CategoryTheory.MorphismProperty C)
[P.IsMultiplicative]
(hPb : P.StableUnderBaseChange)
:
To a morphism property P
satisfying the conditions of MorphismProperty.pretopology
, we
associate the Grothendieck topology generated by P.pretopology
.
Equations
- P.grothendieckTopology hPb = CategoryTheory.Pretopology.toGrothendieck C (P.pretopology hPb)
Instances For
theorem
CategoryTheory.MorphismProperty.pretopology_le
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasPullbacks C]
{P : CategoryTheory.MorphismProperty C}
{Q : CategoryTheory.MorphismProperty C}
[P.IsMultiplicative]
(hPb : P.StableUnderBaseChange)
[Q.IsMultiplicative]
(hQb : Q.StableUnderBaseChange)
(hPQ : P ≤ Q)
:
P.pretopology hPb ≤ Q.pretopology hQb
theorem
CategoryTheory.MorphismProperty.pretopology_inf
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasPullbacks C]
(P : CategoryTheory.MorphismProperty C)
(Q : CategoryTheory.MorphismProperty C)
[P.IsMultiplicative]
(hPb : P.StableUnderBaseChange)
[Q.IsMultiplicative]
(hQb : Q.StableUnderBaseChange)
: