Constructing a semiadditive structure from binary biproducts #
We show that any category with zero morphisms and binary biproducts is enriched over the category of commutative monoids.
def
CategoryTheory.SemiadditiveOfBinaryBiproducts.leftAdd
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(X : C)
(Y : C)
(f : X ⟶ Y)
(g : X ⟶ Y)
:
X ⟶ Y
f +ₗ g
is the composite X ⟶ Y ⊞ Y ⟶ Y
, where the first map is (f, g)
and the second map
is (𝟙 𝟙)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.SemiadditiveOfBinaryBiproducts.rightAdd
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(X : C)
(Y : C)
(f : X ⟶ Y)
(g : X ⟶ Y)
:
X ⟶ Y
f +ᵣ g
is the composite X ⟶ X ⊞ X ⟶ Y
, where the first map is (𝟙, 𝟙)
and the second map
is (f g)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_leftAdd
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(X : C)
(Y : C)
:
EckmannHilton.IsUnital (fun (x1 x2 : X ⟶ Y) => CategoryTheory.SemiadditiveOfBinaryBiproducts.leftAdd X Y x1 x2) 0
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_rightAdd
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(X : C)
(Y : C)
:
EckmannHilton.IsUnital (fun (x1 x2 : X ⟶ Y) => CategoryTheory.SemiadditiveOfBinaryBiproducts.rightAdd X Y x1 x2) 0
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.distrib
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(X : C)
(Y : C)
(f : X ⟶ Y)
(g : X ⟶ Y)
(h : X ⟶ Y)
(k : X ⟶ Y)
:
CategoryTheory.SemiadditiveOfBinaryBiproducts.leftAdd X Y
(CategoryTheory.SemiadditiveOfBinaryBiproducts.rightAdd X Y f g)
(CategoryTheory.SemiadditiveOfBinaryBiproducts.rightAdd X Y h k) = CategoryTheory.SemiadditiveOfBinaryBiproducts.rightAdd X Y
(CategoryTheory.SemiadditiveOfBinaryBiproducts.leftAdd X Y f h)
(CategoryTheory.SemiadditiveOfBinaryBiproducts.leftAdd X Y g k)
def
CategoryTheory.SemiadditiveOfBinaryBiproducts.addCommMonoidHomOfHasBinaryBiproducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
(X : C)
(Y : C)
:
AddCommMonoid (X ⟶ Y)
In a category with binary biproducts, the morphisms form a commutative monoid.
Equations
Instances For
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_right_addition
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
{X : C}
{Y : C}
(f : X ⟶ Y)
(g : X ⟶ Y)
:
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.add_eq_left_addition
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
{X : C}
{Y : C}
(f : X ⟶ Y)
(g : X ⟶ Y)
:
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.add_comp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
{X : C}
{Y : C}
{Z : C}
(f : X ⟶ Y)
(g : X ⟶ Y)
(h : Y ⟶ Z)
:
theorem
CategoryTheory.SemiadditiveOfBinaryBiproducts.comp_add
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
[CategoryTheory.Limits.HasBinaryBiproducts C]
{X : C}
{Y : C}
{Z : C}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(h : Y ⟶ Z)
: