Equivalence of full subcategories #
The inclusion functor P.FullSubcategory ⥤ Q.FullSubcategory induced
by an inequality P ≤ Q in ObjectProperty C is an equivalence iff
Q ≤ P.isoClosure.
theorem
CategoryTheory.ObjectProperty.essSurj_ιOfLE_iff
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
(h : P ≤ Q)
:
theorem
CategoryTheory.ObjectProperty.isEquivalence_ιOfLE_iff
{C : Type u}
[Category.{v, u} C]
{P Q : ObjectProperty C}
(h : P ≤ Q)
:
instance
CategoryTheory.ObjectProperty.instIsEquivalenceFullSubcategoryIsoClosureιOfLE
{C : Type u}
[Category.{v, u} C]
{P : ObjectProperty C}
:
(ιOfLE ⋯).IsEquivalence
The equivalence between the fullsubcategory ⊤ of a category C and C itself.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
def
CategoryTheory.Equivalence.congrFullSubcategory
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{P : ObjectProperty C}
{Q : ObjectProperty D}
(e : C ≌ D)
[Q.IsClosedUnderIsomorphisms]
(h : Q.inverseImage e.functor = P)
:
The equivalence of categories between two fullsubcategories P and Q
of categories C and D that is induced by an equivalence e : C ≌ D
when Q.inverseImage e.functor = P and Q respects isomorphisms.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Equivalence.congrFullSubcategory_counitIso
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{P : ObjectProperty C}
{Q : ObjectProperty D}
(e : C ≌ D)
[Q.IsClosedUnderIsomorphisms]
(h : Q.inverseImage e.functor = P)
:
@[simp]
theorem
CategoryTheory.Equivalence.congrFullSubcategory_functor
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{P : ObjectProperty C}
{Q : ObjectProperty D}
(e : C ≌ D)
[Q.IsClosedUnderIsomorphisms]
(h : Q.inverseImage e.functor = P)
:
@[simp]
theorem
CategoryTheory.Equivalence.congrFullSubcategory_inverse
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{P : ObjectProperty C}
{Q : ObjectProperty D}
(e : C ≌ D)
[Q.IsClosedUnderIsomorphisms]
(h : Q.inverseImage e.functor = P)
:
@[simp]
theorem
CategoryTheory.Equivalence.congrFullSubcategory_unitIso
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{P : ObjectProperty C}
{Q : ObjectProperty D}
(e : C ≌ D)
[Q.IsClosedUnderIsomorphisms]
(h : Q.inverseImage e.functor = P)
:
(e.congrFullSubcategory h).unitIso = (P.fullyFaithfulι.whiskeringRight P.FullSubcategory).preimageIso (P.ι.isoWhiskerLeft e.unitIso)