Documentation

Mathlib.CategoryTheory.MorphismProperty.TransfiniteComposition

Classes of morphisms that are stable under transfinite composition #

Let F : J ⥤ C be a functor from a well ordered type J. We say that F is well-order-continuous (F.IsWellOrderContinuous), if for any m : J which satisfies hm : Order.IsSuccLimit m, F.obj m identifies to the colimit of the F.obj j for j < m.

Given W : MorphismProperty C, we say that W.IsStableUnderTransfiniteCompositionOfShape J if for any colimit cocone c for a well-order-continuous functor F : J ⥤ C such that F.obj j ⟶ F.obj (Order.succ j) belongs to W, we can conclude that c.ι.app ⊥ : F.obj ⊥ ⟶ c.pt belongs to W. The morphisms of this form c.ι.app ⊥ for any F and c are part of the morphism property W.transfiniteCompositionsOfShape J. The condition of being stable by transfinite composition of shape J is actually phrased as W.transfiniteCompositionsOfShape J ≤ W.

In particular, if J := ℕ, we define W.IsStableUnderInfiniteComposition, which means that if F : ℕ ⥤ C is such that F.obj n ⟶ F.obj (n + 1) belongs to W, then F.obj 0 ⟶ c.pt belongs to W for any colimit cocone c : Cocone F.

Finally, we define the class W.IsStableUnderTransfiniteComposition which says that W.IsStableUnderTransfiniteCompositionOfShape J holds for any well ordered type J in a certain universe u. (We also require that W is multiplicative.)

Given a functor F : J ⥤ C and m : J, this is the induced functor Set.Iio j ⥤ C.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Functor.restrictionLT_map {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [Preorder J] (F : CategoryTheory.Functor J C) (j : J) {X✝ Y✝ : (Set.Iio j)} (f : X✝ Y✝) :
    (F.restrictionLT j).map f = F.map ((Monotone.functor ).map f)
    @[simp]
    theorem CategoryTheory.Functor.restrictionLT_obj {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [Preorder J] (F : CategoryTheory.Functor J C) (j : J) (X : (Set.Iio j)) :
    (F.restrictionLT j).obj X = F.obj X

    Given a functor F : J ⥤ C and m : J, this is the cocone with point F.obj m for the restriction of F to Set.Iio m.

    Equations
    • F.coconeLT m = { pt := F.obj m, ι := { app := fun (x : (Set.Iio m)) => match x with | i, hi => F.map (CategoryTheory.homOfLE ), naturality := } }
    Instances For
      @[simp]
      theorem CategoryTheory.Functor.coconeLT_ι_app {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [Preorder J] (F : CategoryTheory.Functor J C) (m : J) (x✝ : (Set.Iio m)) :
      (F.coconeLT m).app x✝ = match x✝ with | i, hi => F.map (CategoryTheory.homOfLE )
      @[simp]
      theorem CategoryTheory.Functor.coconeLT_pt {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [Preorder J] (F : CategoryTheory.Functor J C) (m : J) :
      (F.coconeLT m).pt = F.obj m

      A functor F : J ⥤ C is well-order-continuous if for any limit element m : J, F.obj m identifies to the colimit of the F.obj j for j < m.

      Instances
        noncomputable def CategoryTheory.Functor.isColimitOfIsWellOrderContinuous {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [Preorder J] (F : CategoryTheory.Functor J C) [F.IsWellOrderContinuous] (m : J) (hm : Order.IsSuccLimit m) :

        If F : J ⥤ C is well-order-continuous and m : J is a limit element, then the cocone F.coconeLT m is colimit, i.e. F.obj m identifies to the colimit of the F.obj j for j < m.

        Equations
        • F.isColimitOfIsWellOrderContinuous m hm = .some
        Instances For
          theorem CategoryTheory.Functor.isWellOrderContinuous_of_iso {C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [Preorder J] {F G : CategoryTheory.Functor J C} (e : F G) [F.IsWellOrderContinuous] :
          G.IsWellOrderContinuous

          Given W : MorphismProperty C and a well-ordered type J, we say that a morphism in C is a transfinite composition of morphisms in W of shape J if it is of the form c.ι.app ⊥ : F.obj ⊥ ⟶ c.pt where c is a colimit cocone for a well-order-continuous functor F : J ⥤ C such that for any non-maximal j : J, the map F.map j ⟶ F.map (Order.succ j) is in W.

          Instances For

            A class of morphisms W : MorphismProperty C is stable under transfinite compositions of shape J if for any well-order-continuous functor F : J ⥤ C such that F.obj j ⟶ F.obj (Order.succ j) is in W, then F.obj ⊥ ⟶ c.pt is in W for any colimit cocone c : Cocone F.

            • le : W.transfiniteCompositionsOfShape J W
            Instances
              theorem CategoryTheory.MorphismProperty.transfiniteCompositionsOfShape_le {C : Type u} [CategoryTheory.Category.{v, u} C] (W : CategoryTheory.MorphismProperty C) (J : Type w) [LinearOrder J] [SuccOrder J] [OrderBot J] [WellFoundedLT J] [W.IsStableUnderTransfiniteCompositionOfShape J] :
              W.transfiniteCompositionsOfShape J W
              theorem CategoryTheory.MorphismProperty.mem_of_transfinite_composition {C : Type u} [CategoryTheory.Category.{v, u} C] (W : CategoryTheory.MorphismProperty C) {J : Type w} [LinearOrder J] [SuccOrder J] [OrderBot J] [WellFoundedLT J] [W.IsStableUnderTransfiniteCompositionOfShape J] {F : CategoryTheory.Functor J C} [F.IsWellOrderContinuous] (hF : ∀ (j : J), ¬IsMax jW (F.map (CategoryTheory.homOfLE ))) {c : CategoryTheory.Limits.Cocone F} (hc : CategoryTheory.Limits.IsColimit c) :
              W (c.app )
              @[reducible, inline]

              A class of morphisms W : MorphismProperty C is stable under infinite composition if for any functor F : ℕ ⥤ C such that F.obj n ⟶ F.obj (n + 1) is in W for any n : ℕ, the map F.obj 0 ⟶ c.pt is in W for any colimit cocone c : Cocone F.

              Equations
              • W.IsStableUnderInfiniteComposition = W.IsStableUnderTransfiniteCompositionOfShape
              Instances For

                A class of morphisms W : MorphismProperty C is stable under transfinite composition if it is multiplicative and stable under transfinite composition of any shape (in a certain universe).

                Instances