Deriving RigidCategory
instance for braided and left/right rigid categories. #
def
CategoryTheory.BraidedCategory.exactPairing_swap
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X Y : C)
[CategoryTheory.ExactPairing X Y]
:
If X
and Y
forms an exact pairing in a braided category, then so does Y
and X
by composing the coevaluation and evaluation morphisms with associators.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.BraidedCategory.hasLeftDualOfHasRightDual
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
{X : C}
[CategoryTheory.HasRightDual X]
:
If X
has a right dual in a braided category, then it has a left dual.
Equations
Instances For
def
CategoryTheory.BraidedCategory.hasRightDualOfHasLeftDual
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
{X : C}
[CategoryTheory.HasLeftDual X]
:
If X
has a left dual in a braided category, then it has a right dual.
Equations
Instances For
instance
CategoryTheory.BraidedCategory.rigidCategoryOfRightRigidCategory
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
[CategoryTheory.RightRigidCategory C]
:
If C
is a braided and right rigid category, then it is a rigid category. -
instance
CategoryTheory.BraidedCategory.rigidCategoryOfLeftRigidCategory
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.BraidedCategory C]
[CategoryTheory.LeftRigidCategory C]
:
If C
is a braided and left rigid category, then it is a rigid category. -