Documentation

Mathlib.CategoryTheory.Monoidal.Internal.Module

Mon_ (ModuleCat R) ≌ AlgebraCat R #

The category of internal monoid objects in ModuleCat R is equivalent to the category of "native" bundled R-algebras.

Moreover, this equivalence is compatible with the forgetful functors to ModuleCat R.

noncomputable instance ModuleCat.MonModuleEquivalenceAlgebra.Algebra_of_Mon_ {R : Type u} [CommRing R] (A : Mon_ (ModuleCat R)) :
Algebra R A.X
Equations
@[simp]
theorem ModuleCat.MonModuleEquivalenceAlgebra.algebraMap {R : Type u} [CommRing R] (A : Mon_ (ModuleCat R)) (r : R) :
(algebraMap R A.X) r = A.one.hom r

Converting a monoid object in ModuleCat R to a bundled algebra.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply {R : Type u} [CommRing R] {x✝ x✝¹ : Mon_ (ModuleCat R)} (f : x✝ x✝¹) (a : x✝.X) :

    Converting a bundled algebra to a monoid object in ModuleCat R.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Converting a bundled algebra to a monoid object in ModuleCat R.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom_hom {R : Type u} [CommRing R] {X✝ Y✝ : AlgebraCat R} (f : X✝ Y✝) :
        (ModuleCat.MonModuleEquivalenceAlgebra.inverse.map f).hom.hom = f.hom.toLinearMap

        The category of internal monoid objects in ModuleCat R is equivalent to the category of "native" bundled R-algebras.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The equivalence Mon_ (ModuleCat R) ≌ AlgebraCat R is naturally compatible with the forgetful functors to ModuleCat R.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For