Monoids as discrete monoidal categories #
The discrete category on a monoid is a monoidal category. Multiplicative morphisms induced monoidal functors.
Equations
- CategoryTheory.Discrete.addMonoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_tensorObj_as
(M : Type u)
[AddMonoid M]
(X : CategoryTheory.Discrete M)
(Y : CategoryTheory.Discrete M)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).as = X.as + Y.as
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_leftUnitor
(M : Type u)
[AddMonoid M]
(X : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidal_leftUnitor
(M : Type u)
[Monoid M]
(X : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidal_tensorObj_as
(M : Type u)
[Monoid M]
(X : CategoryTheory.Discrete M)
(Y : CategoryTheory.Discrete M)
:
(CategoryTheory.MonoidalCategory.tensorObj X Y).as = X.as * Y.as
@[simp]
theorem
CategoryTheory.Discrete.monoidal_rightUnitor
(M : Type u)
[Monoid M]
(X : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidal_associator
(M : Type u)
[Monoid M]
:
∀ (x x_1 x_2 : CategoryTheory.Discrete M),
CategoryTheory.MonoidalCategory.associator x x_1 x_2 = CategoryTheory.Discrete.eqToIso ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_associator
(M : Type u)
[AddMonoid M]
:
∀ (x x_1 x_2 : CategoryTheory.Discrete M),
CategoryTheory.MonoidalCategory.associator x x_1 x_2 = CategoryTheory.Discrete.eqToIso ⋯
@[simp]
Equations
- CategoryTheory.Discrete.monoidal M = CategoryTheory.MonoidalCategory.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidal_tensorUnit_as
(M : Type u)
[AddMonoid M]
:
(𝟙_ (CategoryTheory.Discrete M)).as = 0
@[simp]
theorem
CategoryTheory.Discrete.monoidal_tensorUnit_as
(M : Type u)
[Monoid M]
:
(𝟙_ (CategoryTheory.Discrete M)).as = 1
def
CategoryTheory.Discrete.addMonoidalFunctor
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
An additive morphism between add_monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Discrete.addMonoidalFunctor_toLaxMonoidalFunctor_toFunctor_obj_as
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(X : CategoryTheory.Discrete M)
:
((CategoryTheory.Discrete.addMonoidalFunctor F).obj X).as = F X.as
@[simp]
theorem
CategoryTheory.Discrete.monoidalFunctor_toLaxMonoidalFunctor_μ
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(X : CategoryTheory.Discrete M)
(Y : CategoryTheory.Discrete M)
:
@[simp]
theorem
CategoryTheory.Discrete.monoidalFunctor_toLaxMonoidalFunctor_toFunctor_obj_as
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
(X : CategoryTheory.Discrete M)
:
((CategoryTheory.Discrete.monoidalFunctor F).obj X).as = F X.as
@[simp]
theorem
CategoryTheory.Discrete.addMonoidalFunctor_toLaxMonoidalFunctor_toFunctor_map
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
:
∀ {X Y : CategoryTheory.Discrete M} (f : X ⟶ Y),
(CategoryTheory.Discrete.addMonoidalFunctor F).map f = CategoryTheory.Discrete.eqToHom ⋯
@[simp]
theorem
CategoryTheory.Discrete.monoidalFunctor_toLaxMonoidalFunctor_toFunctor_map
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
∀ {X Y : CategoryTheory.Discrete M} (f : X ⟶ Y),
(CategoryTheory.Discrete.monoidalFunctor F).map f = CategoryTheory.Discrete.eqToHom ⋯
@[simp]
theorem
CategoryTheory.Discrete.addMonoidalFunctor_toLaxMonoidalFunctor_μ
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
(F : M →+ N)
(X : CategoryTheory.Discrete M)
(Y : CategoryTheory.Discrete M)
:
def
CategoryTheory.Discrete.monoidalFunctor
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
(F : M →* N)
:
A multiplicative morphism between monoids gives a monoidal functor between the corresponding discrete monoidal categories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Discrete.addMonoidalFunctorComp
{M : Type u}
[AddMonoid M]
{N : Type u'}
[AddMonoid N]
{K : Type u}
[AddMonoid K]
(F : M →+ N)
(G : N →+ K)
:
The monoidal natural isomorphism corresponding to composing two additive morphisms.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Discrete.monoidalFunctorComp
{M : Type u}
[Monoid M]
{N : Type u'}
[Monoid N]
{K : Type u}
[Monoid K]
(F : M →* N)
(G : N →* K)
:
The monoidal natural isomorphism corresponding to composing two multiplicative morphisms.
Equations
- One or more equations did not get rendered due to their size.