Documentation

Mathlib.CategoryTheory.Monoidal.CommMon_

The category of commutative monoids in a braided monoidal category. #

The trivial commutative monoid object. We later show this is initial in CommMon_ C.

Equations
Instances For

    Constructor for isomorphisms in the category CommMon_ C.

    Equations
    Instances For
      @[simp]
      theorem CommMon_.mkIso_hom_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] {M N : CommMon_ C} (f : M.X N.X) (one_f : CategoryTheory.CategoryStruct.comp M.one f.hom = N.one := by aesop_cat) (mul_f : CategoryTheory.CategoryStruct.comp M.mul f.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f.hom f.hom) N.mul := by aesop_cat) :
      (CommMon_.mkIso f one_f mul_f).hom.hom = f.hom
      @[simp]
      theorem CommMon_.mkIso_inv_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] {M N : CommMon_ C} (f : M.X N.X) (one_f : CategoryTheory.CategoryStruct.comp M.one f.hom = N.one := by aesop_cat) (mul_f : CategoryTheory.CategoryStruct.comp M.mul f.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f.hom f.hom) N.mul := by aesop_cat) :
      (CommMon_.mkIso f one_f mul_f).inv.hom = f.inv

      A lax braided functor takes commutative monoid objects to commutative monoid objects.

      That is, a lax braided functor F : C ⥤ D induces a functor CommMon_ C ⥤ CommMon_ D.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Commutative monoid objects in C are "just" braided lax monoidal functors from the trivial braided monoidal category to C.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For