Equalizers as pullbacks of products #
Also see CategoryTheory.Limits.Constructions.Equalizers
for very similar results.
theorem
CategoryTheory.Limits.isPullback_equalizer_prod
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X : C}
{Y : C}
(f : X ⟶ Y)
(g : X ⟶ Y)
[CategoryTheory.Limits.HasEqualizer f g]
[CategoryTheory.Limits.HasBinaryProduct Y Y]
:
The equalizer of f g : X ⟶ Y
is the pullback of the diagonal map Y ⟶ Y × Y
along the map (f, g) : X ⟶ Y × Y
.
theorem
CategoryTheory.Limits.isPushout_coequalizer_coprod
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X : C}
{Y : C}
(f : X ⟶ Y)
(g : X ⟶ Y)
[CategoryTheory.Limits.HasCoequalizer f g]
[CategoryTheory.Limits.HasBinaryCoproduct X X]
:
The coequalizer of f g : X ⟶ Y
is the pushout of the diagonal map X ⨿ X ⟶ X
along the map (f, g) : X ⨿ X ⟶ Y
.