The coproduct of a separating family of objects is separating #
If a family of objects S : ι → C
in a category with zero morphisms
is separating, then the coproduct of S
is a separator in C
.
theorem
CategoryTheory.IsSeparating.isSeparator_of_isColimit_cofan
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
{ι : Type w}
{S : ι → C}
(hS : CategoryTheory.IsSeparating (Set.range S))
{c : CategoryTheory.Limits.Cofan S}
(hc : CategoryTheory.Limits.IsColimit c)
:
theorem
CategoryTheory.IsSeparating.isSeparator_coproduct
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
{ι : Type w}
{S : ι → C}
(hS : CategoryTheory.IsSeparating (Set.range S))
[CategoryTheory.Limits.HasCoproduct S]
: