Documentation

Mathlib.CategoryTheory.FiberedCategory.Fiber

Fibers of a functors #

In this file we define, for a functor p : š’³ ā„¤ š’“, the fiber categories Fiber p S for every S : š’® as follows

For any category C equipped with a functor F : C ā„¤ š’³ such that F ā‹™ p is constant at S, we define a functor inducedFunctor : C ā„¤ Fiber p S that F factors through.

def CategoryTheory.Functor.Fiber {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] (p : CategoryTheory.Functor š’³ š’®) (S : š’®) :
Type uā‚‚

Fiber p S is the type of elements of š’³ mapping to S via p.

Equations
  • p.Fiber S = { a : š’³ // p.obj a = S }
Instances For

    Fiber p S has the structure of a category with morphisms being those lying over šŸ™ S.

    Equations
    def CategoryTheory.Functor.Fiber.fiberInclusion {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} {S : š’®} :
    CategoryTheory.Functor (p.Fiber S) š’³

    The functor including Fiber p S into š’³.

    Equations
    Instances For
      instance CategoryTheory.Functor.Fiber.instIsHomLiftIdMapFiberInclusion {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} {S : š’®} {a b : p.Fiber S} (Ļ† : a āŸ¶ b) :
      theorem CategoryTheory.Functor.Fiber.hom_ext {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} {S : š’®} {a b : p.Fiber S} {Ļ† Ļˆ : a āŸ¶ b} (h : CategoryTheory.Functor.Fiber.fiberInclusion.map Ļ† = CategoryTheory.Functor.Fiber.fiberInclusion.map Ļˆ) :
      Ļ† = Ļˆ

      For fixed S : š’® this is the natural isomorphism between fiberInclusion ā‹™ p and the constant function valued at S.

      Equations
      Instances For
        def CategoryTheory.Functor.Fiber.mk {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} {S : š’®} {a : š’³} (ha : p.obj a = S) :
        p.Fiber S

        The object of the fiber over S corresponding to a a : š’³ such that p(a) = S.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.Fiber.fiberInclusion_mk {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} {S : š’®} {a : š’³} (ha : p.obj a = S) :
          def CategoryTheory.Functor.Fiber.homMk {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] (p : CategoryTheory.Functor š’³ š’®) (S : š’®) {a b : š’³} (Ļ† : a āŸ¶ b) [p.IsHomLift (CategoryTheory.CategoryStruct.id S) Ļ†] :

          The morphism in the fiber over S corresponding to a morphism in š’³ lifting šŸ™ S.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Functor.Fiber.fiberInclusion_homMk {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] (p : CategoryTheory.Functor š’³ š’®) (S : š’®) {a b : š’³} (Ļ† : a āŸ¶ b) [p.IsHomLift (CategoryTheory.CategoryStruct.id S) Ļ†] :
            def CategoryTheory.Functor.Fiber.inducedFunctor {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} {S : š’®} {C : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} C] {F : CategoryTheory.Functor C š’³} (hF : F.comp p = (CategoryTheory.Functor.const C).obj S) :

            Given a functor F : C ā„¤ š’³ such that F ā‹™ p is constant at some S : š’®, then we get an induced functor C ā„¤ Fiber p S that F factors through.

            Equations
            Instances For
              @[simp]

              Given a functor F : C ā„¤ š’³ such that F ā‹™ p is constant at some S : š’®, then we get a natural isomorphism between inducedFunctor _ ā‹™ fiberInclusion and F.

              Equations
              Instances For