Small sets in the category of structured arrows #
Here we prove a technical result about small sets in the category of structured arrows that will be used in the proof of the Special Adjoint Functor Theorem.
instance
CategoryTheory.StructuredArrow.small_proj_preimage_of_locallySmall
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{S : D}
{T : CategoryTheory.Functor C D}
{𝒢 : Set C}
[Small.{v₁, u₁} ↑𝒢]
[CategoryTheory.LocallySmall.{v₁, v₂, u₂} D]
:
Small.{v₁, max u₁ v₂} ↑((CategoryTheory.StructuredArrow.proj S T).obj ⁻¹' 𝒢)
Equations
- ⋯ = ⋯
instance
CategoryTheory.CostructuredArrow.small_proj_preimage_of_locallySmall
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{D : Type u₂}
[CategoryTheory.Category.{v₂, u₂} D]
{S : CategoryTheory.Functor C D}
{T : D}
{𝒢 : Set C}
[Small.{v₁, u₁} ↑𝒢]
[CategoryTheory.LocallySmall.{v₁, v₂, u₂} D]
:
Small.{v₁, max u₁ v₂} ↑((CategoryTheory.CostructuredArrow.proj S T).obj ⁻¹' 𝒢)
Equations
- ⋯ = ⋯