Documentation

Mathlib.CategoryTheory.ClosedUnderIsomorphisms

Predicates on objects which are closed under isomorphisms #

This file introduces the type class ClosedUnderIsomorphisms P for predicates P : C → Prop on the objects of a category C.

A predicate C → Prop on the objects of a category is closed under isomorphisms if whenever P X, then all the objects Y that are isomorphic to X also satisfy P Y.

  • of_iso : ∀ {X Y : C}, (X Y)P XP Y
Instances
    theorem CategoryTheory.ClosedUnderIsomorphisms.of_iso {C : Type u_1} :
    ∀ {inst : CategoryTheory.Category.{u_2, u_1} C} {P : CProp} [self : CategoryTheory.ClosedUnderIsomorphisms P] {X Y : C}, (X Y)P XP Y
    theorem CategoryTheory.mem_of_iso {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (P : CProp) [CategoryTheory.ClosedUnderIsomorphisms P] {X : C} {Y : C} (e : X Y) (hX : P X) :
    P Y

    The closure by isomorphisms of a predicate on objects in a category.

    Equations
    Instances For
      theorem CategoryTheory.mem_isoClosure_iff {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (P : CProp) (X : C) :
      CategoryTheory.isoClosure P X ∃ (Y : C), ∃ (x : P Y), Nonempty (X Y)
      theorem CategoryTheory.mem_isoClosure {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {P : CProp} {X : C} {Y : C} (h : P X) (e : X Y) [CategoryTheory.IsIso e] :