The category of "pairwise intersections". #
Given ι : Type v
, we build the diagram category Pairwise ι
with objects single i
and pair i j
, for i j : ι
,
whose only non-identity morphisms are
left : pair i j ⟶ single i
and right : pair i j ⟶ single j
.
We use this later in describing (one formulation of) the sheaf condition.
Given any function U : ι → α
, where α
is some complete lattice (e.g. (Opens X)ᵒᵖ
),
we produce a functor Pairwise ι ⥤ α
in the obvious way,
and show that iSup U
provides a colimit cocone over this functor.
An inductive type representing either a single term of a type ι
, or a pair of terms.
We use this as the objects of a category to describe the sheaf condition.
- single: {ι : Type v} → ι → CategoryTheory.Pairwise ι
- pair: {ι : Type v} → ι → ι → CategoryTheory.Pairwise ι
Instances For
Equations
- CategoryTheory.Pairwise.pairwiseInhabited = { default := CategoryTheory.Pairwise.single default }
Morphisms in the category Pairwise ι
. The only non-identity morphisms are
left i j : single i ⟶ pair i j
and right i j : single j ⟶ pair i j
.
- id_single: {ι : Type v} → (i : ι) → (CategoryTheory.Pairwise.single i).Hom (CategoryTheory.Pairwise.single i)
- id_pair: {ι : Type v} → (i j : ι) → (CategoryTheory.Pairwise.pair i j).Hom (CategoryTheory.Pairwise.pair i j)
- left: {ι : Type v} → (i j : ι) → (CategoryTheory.Pairwise.pair i j).Hom (CategoryTheory.Pairwise.single i)
- right: {ι : Type v} → (i j : ι) → (CategoryTheory.Pairwise.pair i j).Hom (CategoryTheory.Pairwise.single j)
Instances For
Equations
- CategoryTheory.Pairwise.homInhabited = { default := CategoryTheory.Pairwise.Hom.id_single default }
Composition of morphisms in Pairwise ι
.
Equations
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.id_single i) x = x
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.id_pair i j) x = x
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.left i j) (CategoryTheory.Pairwise.Hom.id_single i) = CategoryTheory.Pairwise.Hom.left i j
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.right i j) (CategoryTheory.Pairwise.Hom.id_single j) = CategoryTheory.Pairwise.Hom.right i j
Instances For
A helper tactic for aesop_cat
and Pairwise
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- CategoryTheory.Pairwise.instCategory = CategoryTheory.Category.mk ⋯ ⋯ ⋯
Auxiliary definition for diagram
.
Equations
Instances For
Auxiliary definition for diagram
.
Equations
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.id_single i) = CategoryTheory.CategoryStruct.id (CategoryTheory.Pairwise.diagramObj U (CategoryTheory.Pairwise.single i))
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.id_pair i j) = CategoryTheory.CategoryStruct.id (CategoryTheory.Pairwise.diagramObj U (CategoryTheory.Pairwise.pair i j))
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.left i j) = CategoryTheory.homOfLE ⋯
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.right i j) = CategoryTheory.homOfLE ⋯
Instances For
Given a function U : ι → α
for [SemilatticeInf α]
, we obtain a functor Pairwise ι ⥤ α
,
sending single i
to U i
and pair i j
to U i ⊓ U j
,
and the morphisms to the obvious inequalities.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Auxiliary definition for cocone
.
Equations
Instances For
Given a function U : ι → α
for [CompleteLattice α]
,
iSup U
provides a cocone over diagram U
.
Equations
- CategoryTheory.Pairwise.cocone U = { pt := iSup U, ι := { app := CategoryTheory.Pairwise.coconeιApp U, naturality := ⋯ } }
Instances For
Given a function U : ι → α
for [CompleteLattice α]
,
iInf U
provides a limit cone over diagram U
.
Equations
- CategoryTheory.Pairwise.coconeIsColimit U = { desc := fun (s : CategoryTheory.Limits.Cocone (CategoryTheory.Pairwise.diagram U)) => CategoryTheory.homOfLE ⋯, fac := ⋯, uniq := ⋯ }