The Factorisation Category of a Category #
Factorisation f
is the category containing as objects all factorisations of a morphism f
.
We show that Factorisation f
always has an initial and a terminal object.
TODO: Show that Factorisation f
is isomorphic to a comma category in two ways.
TODO: Make MonoFactorisation f
a special case of a Factorisation f
.
Factorisations of a morphism f
as a structure, containing, one object, two morphisms,
and the condition that their composition equals f
.
- mid : C
The midpoint of the factorisation.
- ι : X ⟶ self.mid
The morphism into the factorisation midpoint.
- π : self.mid ⟶ Y
The morphism out of the factorisation midpoint.
- ι_π : CategoryTheory.CategoryStruct.comp self.ι self.π = f
The factorisation condition.
Instances For
The factorisation condition.
Morphisms of Factorisation f
consist of morphism between their midpoints and the obvious
commutativity conditions.
- h : d.mid ⟶ e.mid
The morphism between the midpoints of the factorizations.
- ι_h : CategoryTheory.CategoryStruct.comp d.ι self.h = e.ι
The left commuting triangle of the factorization morphism.
- h_π : CategoryTheory.CategoryStruct.comp self.h e.π = d.π
The right commuting triangle of the factorization morphism.
Instances For
The left commuting triangle of the factorization morphism.
The right commuting triangle of the factorization morphism.
The identity morphism of Factorisation f
.
Equations
- CategoryTheory.Factorisation.Hom.id d = { h := CategoryTheory.CategoryStruct.id d.mid, ι_h := ⋯, h_π := ⋯ }
Instances For
Composition of morphisms in Factorisation f
.
Equations
- f.comp g = { h := CategoryTheory.CategoryStruct.comp f.h g.h, ι_h := ⋯, h_π := ⋯ }
Instances For
Equations
- CategoryTheory.Factorisation.instCategory = CategoryTheory.Category.mk ⋯ ⋯ ⋯
The initial object in Factorisation f
, with the domain of f
as its midpoint.
Equations
- CategoryTheory.Factorisation.initial = { mid := X, ι := CategoryTheory.CategoryStruct.id X, π := f, ι_π := ⋯ }
Instances For
The unique morphism out of Factorisation.initial f
.
Equations
- d.initialHom = { h := d.ι, ι_h := ⋯, h_π := ⋯ }
Instances For
Equations
- d.instUniqueHomInitial = { default := d.initialHom, uniq := ⋯ }
The terminal object in Factorisation f
, with the codomain of f
as its midpoint.
Equations
- CategoryTheory.Factorisation.terminal = { mid := Y, ι := f, π := CategoryTheory.CategoryStruct.id Y, ι_π := ⋯ }
Instances For
The unique morphism into Factorisation.terminal f
.
Equations
- d.terminalHom = { h := d.π, ι_h := ⋯, h_π := ⋯ }
Instances For
Equations
- d.instUniqueHomTerminal = { default := d.terminalHom, uniq := ⋯ }
The initial factorisation is an initial object
Equations
- CategoryTheory.Factorisation.IsInitial_initial = CategoryTheory.Limits.IsInitial.ofUnique CategoryTheory.Factorisation.initial
Instances For
Equations
- ⋯ = ⋯
The terminal factorisation is a terminal object
Equations
- CategoryTheory.Factorisation.IsTerminal_terminal = CategoryTheory.Limits.IsTerminal.ofUnique CategoryTheory.Factorisation.terminal
Instances For
Equations
- ⋯ = ⋯
The forgetful functor from Factorisation f
to the underlying category C
.
Equations
- CategoryTheory.Factorisation.forget = { obj := CategoryTheory.Factorisation.mid, map := fun {X_1 Y_1 : CategoryTheory.Factorisation f} (f_1 : X_1 ⟶ Y_1) => f_1.h, map_id := ⋯, map_comp := ⋯ }