Documentation

Mathlib.CategoryTheory.Category.Factorisation

The Factorisation Category of a Category #

Factorisation f is the category containing as objects all factorisations of a morphism f.

We show that Factorisation f always has an initial and a terminal object.

TODO: Show that Factorisation f is isomorphic to a comma category in two ways.

TODO: Make MonoFactorisation f a special case of a Factorisation f.

structure CategoryTheory.Factorisation {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (f : X Y) :
Type (max u v)

Factorisations of a morphism f as a structure, containing, one object, two morphisms, and the condition that their composition equals f.

  • mid : C

    The midpoint of the factorisation.

  • ι : X self.mid

    The morphism into the factorisation midpoint.

  • π : self.mid Y

    The morphism out of the factorisation midpoint.

  • ι_π : CategoryTheory.CategoryStruct.comp self self = f

    The factorisation condition.

Instances For
    structure CategoryTheory.Factorisation.Hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {f : X Y} (d e : CategoryTheory.Factorisation f) :
    Type (max u v)

    Morphisms of Factorisation f consist of morphism between their midpoints and the obvious commutativity conditions.

    Instances For
      theorem CategoryTheory.Factorisation.Hom.ext {C : Type u} {inst✝ : CategoryTheory.Category.{v, u} C} {X Y : C} {f : X Y} {d e : CategoryTheory.Factorisation f} {x y : d.Hom e} (h : x.h = y.h) :
      x = y

      The identity morphism of Factorisation f.

      Equations
      Instances For
        def CategoryTheory.Factorisation.Hom.comp {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {f : X Y} {d₁ d₂ d₃ : CategoryTheory.Factorisation f} :
        d₁.Hom d₂(g : d₂.Hom d₃) → d₁.Hom d₃

        Composition of morphisms in Factorisation f.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Factorisation.Hom.comp_h {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {f : X Y} {d₁ d₂ d₃ : CategoryTheory.Factorisation f} (f✝ : d₁.Hom d₂) (g : d₂.Hom d₃) :
          (f✝.comp g).h = CategoryTheory.CategoryStruct.comp f✝.h g.h

          The initial object in Factorisation f, with the domain of f as its midpoint.

          Equations
          Instances For

            The unique morphism out of Factorisation.initial f.

            Equations
            • d.initialHom = { h := d, ι_h := , h_π := }
            Instances For
              @[simp]
              theorem CategoryTheory.Factorisation.initialHom_h {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {f : X Y} (d : CategoryTheory.Factorisation f) :
              d.initialHom.h = d
              Equations
              • d.instUniqueHomInitial = { default := d.initialHom, uniq := }

              The terminal object in Factorisation f, with the codomain of f as its midpoint.

              Equations
              Instances For

                The unique morphism into Factorisation.terminal f.

                Equations
                • d.terminalHom = { h := d, ι_h := , h_π := }
                Instances For
                  @[simp]
                  theorem CategoryTheory.Factorisation.terminalHom_h {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {f : X Y} (d : CategoryTheory.Factorisation f) :
                  d.terminalHom.h = d
                  Equations
                  • d.instUniqueHomTerminal = { default := d.terminalHom, uniq := }

                  The forgetful functor from Factorisation f to the underlying category C.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Factorisation.forget_map {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} {f : X Y} {X✝ Y✝ : CategoryTheory.Factorisation f} (f✝ : X✝ Y✝) :