Documentation

Mathlib.CategoryTheory.Bicategory.Grothendieck

The Grothendieck construction #

Given a category 𝒮 and any pseudofunctor F from 𝒮ᵒᵖ to Cat, we associate to it a category ∫ F, equipped with a functor ∫ F ⥤ 𝒮.

The category ∫ F is defined as follows:

The projection functor ∫ F ⥤ 𝒮 is then given by projecting to the first factors, i.e.

References #

[Vistoli2008] "Notes on Grothendieck Topologies, Fibered Categories and Descent Theory" by Angelo Vistoli

The type of objects in the fibered category associated to a presheaf valued in types.

  • base : 𝒮

    The underlying object in the base category.

  • fiber : (F.obj { as := Opposite.op self.base })

    The object in the fiber of the base object.

Instances For
    theorem CategoryTheory.Pseudofunctor.Grothendieck.ext {𝒮 : Type u₁} :
    ∀ {inst : CategoryTheory.Category.{v₁, u₁} 𝒮} {F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete 𝒮ᵒᵖ) CategoryTheory.Cat} {x y : F.Grothendieck}, x.base = y.baseHEq x.fiber y.fiberx = y

    Notation for the Grothendieck category associated to a pseudofunctor F.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A morphism in the Grothendieck category F : C ⥤ Cat consists of base : X.base ⟶ Y.base and f.fiber : (F.map base).obj X.fiber ⟶ Y.fiber.

      • base : X.base Y.base

        The morphism between base objects.

      • fiber : X.fiber (F.map self.base.op.toLoc).obj Y.fiber

        The morphism in the fiber over the domain.

      Instances For
        @[simp]
        theorem CategoryTheory.Pseudofunctor.Grothendieck.categoryStruct_comp_fiber {𝒮 : Type u₁} [CategoryTheory.Category.{v₁, u₁} 𝒮] {F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete 𝒮ᵒᵖ) CategoryTheory.Cat} :
        ∀ {x x_1 Z : F.Grothendieck} (f : x x_1) (g : x_1 Z), (CategoryTheory.CategoryStruct.comp f g).fiber = CategoryTheory.CategoryStruct.comp f.fiber (CategoryTheory.CategoryStruct.comp ((F.map f.base.op.toLoc).map g.fiber) ((F.mapComp g.base.op.toLoc f.base.op.toLoc).inv.app Z.fiber))
        theorem CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext {𝒮 : Type u₁} [CategoryTheory.Category.{v₁, u₁} 𝒮] {F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete 𝒮ᵒᵖ) CategoryTheory.Cat} {a : F.Grothendieck} {b : F.Grothendieck} (f : a b) (g : a b) (hfg₁ : f.base = g.base) (hfg₂ : f.fiber = CategoryTheory.CategoryStruct.comp g.fiber (CategoryTheory.eqToHom )) :
        f = g
        theorem CategoryTheory.Pseudofunctor.Grothendieck.Hom.ext_iff {𝒮 : Type u₁} [CategoryTheory.Category.{v₁, u₁} 𝒮] {F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete 𝒮ᵒᵖ) CategoryTheory.Cat} {a : F.Grothendieck} {b : F.Grothendieck} (f : a b) (g : a b) :
        f = g ∃ (hfg : f.base = g.base), f.fiber = CategoryTheory.CategoryStruct.comp g.fiber (CategoryTheory.eqToHom )

        The projection ∫ F ⥤ 𝒮 given by projecting both objects and homs to the first factor.

        Equations
        Instances For