Documentation

Mathlib.CategoryTheory.Adjunction.Unique

Uniqueness of adjoints #

This file shows that adjoints are unique up to natural isomorphism.

Main results #

If F and F' are both left adjoint to G, then they are naturally isomorphic.

Equations
Instances For
    theorem CategoryTheory.Adjunction.homEquiv_leftAdjointUniq_hom_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : C) :
    (adj1.homEquiv x (F'.obj x)) ((adj1.leftAdjointUniq adj2).hom.app x) = adj2.unit.app x
    @[simp]
    theorem CategoryTheory.Adjunction.unit_leftAdjointUniq_hom_app_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : C) {Z : C} (h : G.obj (F'.obj x) Z) :
    CategoryTheory.CategoryStruct.comp (adj1.unit.app x) (CategoryTheory.CategoryStruct.comp (G.map ((adj1.leftAdjointUniq adj2).hom.app x)) h) = CategoryTheory.CategoryStruct.comp (adj2.unit.app x) h
    @[simp]
    theorem CategoryTheory.Adjunction.unit_leftAdjointUniq_hom_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : C) :
    CategoryTheory.CategoryStruct.comp (adj1.unit.app x) (G.map ((adj1.leftAdjointUniq adj2).hom.app x)) = adj2.unit.app x
    @[simp]
    theorem CategoryTheory.Adjunction.leftAdjointUniq_hom_app_counit_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : D) {Z : D} (h : x Z) :
    CategoryTheory.CategoryStruct.comp ((adj1.leftAdjointUniq adj2).hom.app (G.obj x)) (CategoryTheory.CategoryStruct.comp (adj2.counit.app x) h) = CategoryTheory.CategoryStruct.comp (adj1.counit.app x) h
    @[simp]
    theorem CategoryTheory.Adjunction.leftAdjointUniq_hom_app_counit {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : D) :
    CategoryTheory.CategoryStruct.comp ((adj1.leftAdjointUniq adj2).hom.app (G.obj x)) (adj2.counit.app x) = adj1.counit.app x
    theorem CategoryTheory.Adjunction.leftAdjointUniq_inv_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (x : C) :
    (adj1.leftAdjointUniq adj2).inv.app x = (adj2.leftAdjointUniq adj1).hom.app x
    @[simp]
    theorem CategoryTheory.Adjunction.leftAdjointUniq_trans_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {F'' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (adj3 : F'' G) {Z : CategoryTheory.Functor C D} (h : F'' Z) :
    CategoryTheory.CategoryStruct.comp (adj1.leftAdjointUniq adj2).hom (CategoryTheory.CategoryStruct.comp (adj2.leftAdjointUniq adj3).hom h) = CategoryTheory.CategoryStruct.comp (adj1.leftAdjointUniq adj3).hom h
    @[simp]
    theorem CategoryTheory.Adjunction.leftAdjointUniq_trans {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {F'' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (adj3 : F'' G) :
    CategoryTheory.CategoryStruct.comp (adj1.leftAdjointUniq adj2).hom (adj2.leftAdjointUniq adj3).hom = (adj1.leftAdjointUniq adj3).hom
    @[simp]
    theorem CategoryTheory.Adjunction.leftAdjointUniq_trans_app_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {F'' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (adj3 : F'' G) (x : C) {Z : D} (h : F''.obj x Z) :
    CategoryTheory.CategoryStruct.comp ((adj1.leftAdjointUniq adj2).hom.app x) (CategoryTheory.CategoryStruct.comp ((adj2.leftAdjointUniq adj3).hom.app x) h) = CategoryTheory.CategoryStruct.comp ((adj1.leftAdjointUniq adj3).hom.app x) h
    @[simp]
    theorem CategoryTheory.Adjunction.leftAdjointUniq_trans_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {F' : CategoryTheory.Functor C D} {F'' : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F' G) (adj3 : F'' G) (x : C) :
    CategoryTheory.CategoryStruct.comp ((adj1.leftAdjointUniq adj2).hom.app x) ((adj2.leftAdjointUniq adj3).hom.app x) = (adj1.leftAdjointUniq adj3).hom.app x

    If G and G' are both right adjoint to F, then they are naturally isomorphic.

    Equations
    Instances For
      theorem CategoryTheory.Adjunction.homEquiv_symm_rightAdjointUniq_hom_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : D) :
      (adj2.homEquiv (G.obj x) x).symm ((adj1.rightAdjointUniq adj2).hom.app x) = adj1.counit.app x
      @[simp]
      theorem CategoryTheory.Adjunction.unit_rightAdjointUniq_hom_app_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : C) {Z : C} (h : G'.obj (F.obj x) Z) :
      CategoryTheory.CategoryStruct.comp (adj1.unit.app x) (CategoryTheory.CategoryStruct.comp ((adj1.rightAdjointUniq adj2).hom.app (F.obj x)) h) = CategoryTheory.CategoryStruct.comp (adj2.unit.app x) h
      @[simp]
      theorem CategoryTheory.Adjunction.unit_rightAdjointUniq_hom_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : C) :
      CategoryTheory.CategoryStruct.comp (adj1.unit.app x) ((adj1.rightAdjointUniq adj2).hom.app (F.obj x)) = adj2.unit.app x
      @[simp]
      theorem CategoryTheory.Adjunction.rightAdjointUniq_hom_app_counit_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : D) {Z : D} (h : x Z) :
      CategoryTheory.CategoryStruct.comp (F.map ((adj1.rightAdjointUniq adj2).hom.app x)) (CategoryTheory.CategoryStruct.comp (adj2.counit.app x) h) = CategoryTheory.CategoryStruct.comp (adj1.counit.app x) h
      @[simp]
      theorem CategoryTheory.Adjunction.rightAdjointUniq_hom_app_counit {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : D) :
      CategoryTheory.CategoryStruct.comp (F.map ((adj1.rightAdjointUniq adj2).hom.app x)) (adj2.counit.app x) = adj1.counit.app x
      theorem CategoryTheory.Adjunction.rightAdjointUniq_inv_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (x : D) :
      (adj1.rightAdjointUniq adj2).inv.app x = (adj2.rightAdjointUniq adj1).hom.app x
      @[simp]
      theorem CategoryTheory.Adjunction.rightAdjointUniq_trans_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} {G'' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (adj3 : F G'') {Z : CategoryTheory.Functor D C} (h : G'' Z) :
      CategoryTheory.CategoryStruct.comp (adj1.rightAdjointUniq adj2).hom (CategoryTheory.CategoryStruct.comp (adj2.rightAdjointUniq adj3).hom h) = CategoryTheory.CategoryStruct.comp (adj1.rightAdjointUniq adj3).hom h
      @[simp]
      theorem CategoryTheory.Adjunction.rightAdjointUniq_trans {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} {G'' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (adj3 : F G'') :
      CategoryTheory.CategoryStruct.comp (adj1.rightAdjointUniq adj2).hom (adj2.rightAdjointUniq adj3).hom = (adj1.rightAdjointUniq adj3).hom
      @[simp]
      theorem CategoryTheory.Adjunction.rightAdjointUniq_trans_app_assoc {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} {G'' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (adj3 : F G'') (x : D) {Z : C} (h : G''.obj x Z) :
      CategoryTheory.CategoryStruct.comp ((adj1.rightAdjointUniq adj2).hom.app x) (CategoryTheory.CategoryStruct.comp ((adj2.rightAdjointUniq adj3).hom.app x) h) = CategoryTheory.CategoryStruct.comp ((adj1.rightAdjointUniq adj3).hom.app x) h
      @[simp]
      theorem CategoryTheory.Adjunction.rightAdjointUniq_trans_app {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} {G' : CategoryTheory.Functor D C} {G'' : CategoryTheory.Functor D C} (adj1 : F G) (adj2 : F G') (adj3 : F G'') (x : D) :
      CategoryTheory.CategoryStruct.comp ((adj1.rightAdjointUniq adj2).hom.app x) ((adj2.rightAdjointUniq adj3).hom.app x) = (adj1.rightAdjointUniq adj3).hom.app x
      @[deprecated CategoryTheory.conjugateEquiv]
      def CategoryTheory.Adjunction.natTransEquiv {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {R₂ : CategoryTheory.Functor D C} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) :
      (L₂ L₁) (R₁ R₂)

      Alias of CategoryTheory.conjugateEquiv.


      Given two adjunctions L₁ ⊣ R₁ and L₂ ⊣ R₂ both between categories C, D, there is a bijection between natural transformations L₂ ⟶ L₁ and natural transformations R₁ ⟶ R₂. This is defined as a special case of mateEquiv, where the two "vertical" functors are identity, modulo composition with the unitors. Corresponding natural transformations are called conjugateEquiv. TODO: Generalise to when the two vertical functors are equivalences rather than being exactly 𝟭.

      Furthermore, this bijection preserves (and reflects) isomorphisms, i.e. a transformation is an iso iff its image under the bijection is an iso, see eg CategoryTheory.conjugateIsoEquiv. This is in contrast to the general case mateEquiv which does not in general have this property.

      Equations
      Instances For
        @[deprecated CategoryTheory.conjugateIsoEquiv]
        def CategoryTheory.Adjunction.natIsoEquiv {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {R₂ : CategoryTheory.Functor D C} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) :
        (L₂ L₁) (R₁ R₂)

        Alias of CategoryTheory.conjugateIsoEquiv.


        Thus conjugation defines an equivalence between natural isomorphisms.

        Equations
        Instances For