Documentation

Mathlib.CategoryTheory.Abelian.Exact

Exact sequences in abelian categories #

In an abelian category, we get several interesting results related to exactness which are not true in more general settings.

Main results #

In an abelian category, a short complex S is exact iff imageSubobject S.f = kernelSubobject S.g.

If (f, g) is exact, then Abelian.image.ι S.f is a kernel of S.g.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    If (f, g) is exact, then Abelian.coimage.π g is a cokernel of f.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[deprecated CategoryTheory.ShortComplex.Exact.map]
      theorem CategoryTheory.Functor.CategoryTheory.Functor.map_exact {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.Exact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] :
      (S.map F).Exact

      Alias of CategoryTheory.ShortComplex.Exact.map.

      theorem CategoryTheory.Functor.preservesMonomorphisms_of_map_exact {A : Type u₁} {B : Type u₂} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Abelian A] [CategoryTheory.Abelian B] (L : CategoryTheory.Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : CategoryTheory.ShortComplex A), S.Exact(S.map L).Exact) :
      L.PreservesMonomorphisms

      A functor which preserves exactness preserves monomorphisms.

      theorem CategoryTheory.Functor.preservesEpimorphisms_of_map_exact {A : Type u₁} {B : Type u₂} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Abelian A] [CategoryTheory.Abelian B] (L : CategoryTheory.Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : CategoryTheory.ShortComplex A), S.Exact(S.map L).Exact) :
      L.PreservesEpimorphisms

      A functor which preserves exactness preserves epimorphisms.

      def CategoryTheory.Functor.preservesHomologyOfMapExact {A : Type u₁} {B : Type u₂} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Abelian A] [CategoryTheory.Abelian B] (L : CategoryTheory.Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : CategoryTheory.ShortComplex A), S.Exact(S.map L).Exact) :
      L.PreservesHomology

      A functor which preserves the exactness of short complexes preserves homology.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[deprecated CategoryTheory.Functor.PreservesHomology.preservesKernels]
        def CategoryTheory.Functor.preservesKernelsOfMapExact {C : Type u_1} {D : Type u_2} :
        {inst : CategoryTheory.Category.{u_3, u_1} C} → {inst_1 : CategoryTheory.Category.{u_4, u_2} D} → {inst_2 : CategoryTheory.Limits.HasZeroMorphisms C} → {inst_3 : CategoryTheory.Limits.HasZeroMorphisms D} → {F : CategoryTheory.Functor C D} → {inst_4 : F.PreservesZeroMorphisms} → [self : F.PreservesHomology] → X Y : C⦄ → (f : X Y) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.parallelPair f 0) F

        Alias of CategoryTheory.Functor.PreservesHomology.preservesKernels.


        the functor preserves kernels

        Equations
        Instances For
          @[deprecated CategoryTheory.Functor.PreservesHomology.preservesCokernels]
          def CategoryTheory.Functor.preservesCokernelsOfMapExact {C : Type u_1} {D : Type u_2} :
          {inst : CategoryTheory.Category.{u_3, u_1} C} → {inst_1 : CategoryTheory.Category.{u_4, u_2} D} → {inst_2 : CategoryTheory.Limits.HasZeroMorphisms C} → {inst_3 : CategoryTheory.Limits.HasZeroMorphisms D} → {F : CategoryTheory.Functor C D} → {inst_4 : F.PreservesZeroMorphisms} → [self : F.PreservesHomology] → X Y : C⦄ → (f : X Y) → CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.parallelPair f 0) F

          Alias of CategoryTheory.Functor.PreservesHomology.preservesCokernels.


          the functor preserves cokernels

          Equations
          Instances For

            A functor preserving zero morphisms, monos, and cokernels preserves homology.

            Equations
            • L.preservesHomologyOfPreservesMonosAndCokernels = L.preservesHomologyOfMapExact
            Instances For

              A functor preserving zero morphisms, epis, and kernels preserves homology.

              Equations
              • L.preservesHomologyOfPreservesEpisAndKernels = L.preservesHomologyOfMapExact
              Instances For