Documentation

Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.PosPart

The positive (and negative) parts of a selfadjoint element in a C⋆-algebra #

This file defines the positive and negative parts of a selfadjoint element in a C⋆-algebra via the continuous functional calculus and develops the basic API, including the uniqueness of the positive and negative parts.

@[deprecated CFC.posPart_eq_self (since := "2024-11-18")]
@[deprecated CFC.negPart_eq_neg (since := "2024-11-18")]
theorem CFC.posPart_negPart_unique {A : Type u_1} [NonUnitalRing A] [Module A] [SMulCommClass A A] [IsScalarTower A A] [StarRing A] [TopologicalSpace A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] [PartialOrder A] [StarOrderedRing A] [NonnegSpectrumClass A] [TopologicalRing A] [T2Space A] {a b c : A} (habc : a = b - c) (hbc : b * c = 0) (hb : 0 b := by cfc_tac) (hc : 0 c := by cfc_tac) :
a = b a = c

The positive and negative parts of a selfadjoint element a are unique. That is, if a = b - c is the difference of nonnegative elements whose product is zero, then these are precisely a⁺ and a⁻.

theorem CStarAlgebra.linear_combination_nonneg {A : Type u_1} [NonUnitalRing A] [Module A] [SMulCommClass A A] [IsScalarTower A A] [StarRing A] [TopologicalSpace A] [StarModule A] [NonUnitalContinuousFunctionalCalculus IsSelfAdjoint] [PartialOrder A] [StarOrderedRing A] (x : A) :
(↑(realPart x)) - (↑(realPart x)) + (Complex.I (↑(imaginaryPart x)) - Complex.I (↑(imaginaryPart x))) = x