Maps on the unit circle #
In this file we prove some basic lemmas about expMapCircle
and the restriction of Complex.arg
to the unit circle. These two maps define a partial equivalence between circle
and ℝ
, see
circle.argPartialEquiv
and circle.argEquiv
, that sends the whole circle to (-π, π]
.
Alias of Circle.arg_exp
.
Alias of Circle.exp_arg
.
Complex.arg ∘ (↑)
and expMapCircle
define a partial equivalence between circle
and ℝ
with source = Set.univ
and target = Set.Ioc (-π) π
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Complex.arg
and expMapCircle
define an equivalence between circle
and (-π, π]
.
Equations
- Circle.argEquiv = { toFun := fun (z : Circle) => ⟨(↑z).arg, ⋯⟩, invFun := ⇑Circle.exp ∘ Subtype.val, left_inv := ⋯, right_inv := Circle.argEquiv.proof_2 }
Instances For
Alias of Circle.leftInverse_exp_arg
.
Alias of Circle.surjOn_exp_neg_pi_pi
.
Alias of Circle.invOn_arg_exp
.
Alias of Circle.exp_eq_exp
.
Alias of Circle.periodic_exp
.
Alias of Circle.exp_two_pi
.
Alias of Circle.exp_sub_two_pi
.
Alias of Circle.exp_add_two_pi
.
Alias of Real.Angle.toCircle
.
Circle.exp
, applied to a Real.Angle
.
Equations
Instances For
Alias of Real.Angle.toCircle_coe
.
Alias of Real.Angle.coe_toCircle
.
Alias of Real.Angle.toCircle_zero
.
Alias of Real.Angle.toCircle_neg
.
Alias of Real.Angle.toCircle_add
.
Alias of Real.Angle.arg_toCircle
.
The canonical map fun x => exp (2 π i x / T)
from ℝ / ℤ • T
to the unit circle in ℂ
.
If T = 0
we understand this as the constant function 1.
Equations
- AddCircle.toCircle = ⋯.lift
Instances For
Alias of isLocalHomeomorph_circleExp
.