Documentation

Mathlib.Analysis.NormedSpace.Real

Basic facts about real (semi)normed spaces #

In this file we prove some theorems about (semi)normed spaces over real numberes.

Main results #

If E is a nontrivial topological module over , then E has no isolated points. This is a particular case of Module.punctured_nhds_neBot.

Equations
  • =
theorem norm_smul_of_nonneg {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] {t : } (ht : 0 t) (x : E) :
theorem dist_smul_add_one_sub_smul_le {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] {r : } {x : E} {y : E} (h : r Set.Icc 0 1) :
dist (r x + (1 - r) y) x dist y x
theorem closure_ball {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] (x : E) {r : } (hr : r 0) :
theorem frontier_ball {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] (x : E) {r : } (hr : r 0) :
theorem interior_closedBall {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] (x : E) {r : } (hr : r 0) :
theorem interior_sphere {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] (x : E) {r : } (hr : r 0) :
theorem frontier_sphere {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] (x : E) {r : } (hr : r 0) :
theorem exists_norm_eq (E : Type u_1) [NormedAddCommGroup E] [NormedSpace E] [Nontrivial E] {c : } (hc : 0 c) :
∃ (x : E), x = c
@[simp]
@[simp]
theorem range_nnnorm (E : Type u_1) [NormedAddCommGroup E] [NormedSpace E] [Nontrivial E] :
Set.range nnnorm = Set.univ
@[simp]
theorem interior_sphere' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [Nontrivial E] (x : E) (r : ) :
@[simp]