Operator norm: Cartesian products #
Interaction of operator norm with Cartesian products.
theorem
ContinuousLinearMap.norm_fst_le
(π : Type u_1)
(E : Type u_2)
(F : Type u_3)
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NormedSpace π E]
[NormedSpace π F]
:
βContinuousLinearMap.fst π E Fβ β€ 1
The operator norm of the first projection E Γ F β E
is at most 1. (It is 0 if E
is zero, so
the inequality cannot be improved without further assumptions.)
theorem
ContinuousLinearMap.norm_snd_le
(π : Type u_1)
(E : Type u_2)
(F : Type u_3)
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NormedSpace π E]
[NormedSpace π F]
:
βContinuousLinearMap.snd π E Fβ β€ 1
The operator norm of the second projection E Γ F β F
is at most 1. (It is 0 if F
is zero, so
the inequality cannot be improved without further assumptions.)
@[simp]
theorem
ContinuousLinearMap.opNorm_prod
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[SeminormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
(f : E βL[π] F)
(g : E βL[π] G)
:
@[deprecated ContinuousLinearMap.opNorm_prod]
theorem
ContinuousLinearMap.op_norm_prod
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[SeminormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
(f : E βL[π] F)
(g : E βL[π] G)
:
Alias of ContinuousLinearMap.opNorm_prod
.
@[simp]
theorem
ContinuousLinearMap.opNNNorm_prod
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[SeminormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
(f : E βL[π] F)
(g : E βL[π] G)
:
@[deprecated ContinuousLinearMap.opNNNorm_prod]
theorem
ContinuousLinearMap.op_nnnorm_prod
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[SeminormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
(f : E βL[π] F)
(g : E βL[π] G)
:
Alias of ContinuousLinearMap.opNNNorm_prod
.
def
ContinuousLinearMap.prodβα΅’
{π : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[SeminormedAddCommGroup G]
[NormedSpace π E]
[NormedSpace π F]
[NormedSpace π G]
(R : Type u_5)
[Semiring R]
[Module R F]
[Module R G]
[ContinuousConstSMul R F]
[ContinuousConstSMul R G]
[SMulCommClass π R F]
[SMulCommClass π R G]
:
ContinuousLinearMap.prod
as a LinearIsometryEquiv
.
Equations
- ContinuousLinearMap.prodβα΅’ R = { toLinearEquiv := ContinuousLinearMap.prodβ R, norm_map' := β― }
Instances For
def
ContinuousLinearMap.prodMapL
(π : Type u_1)
[NontriviallyNormedField π]
(Mβ : Type u_5)
(Mβ : Type u_6)
(Mβ : Type u_7)
(Mβ : Type u_8)
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
:
ContinuousLinearMap.prodMap
as a continuous linear map.
Instances For
@[simp]
theorem
ContinuousLinearMap.prodMapL_apply
(π : Type u_1)
[NontriviallyNormedField π]
{Mβ : Type u_5}
{Mβ : Type u_6}
{Mβ : Type u_7}
{Mβ : Type u_8}
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
(p : (Mβ βL[π] Mβ) Γ (Mβ βL[π] Mβ))
:
(ContinuousLinearMap.prodMapL π Mβ Mβ Mβ Mβ) p = p.1.prodMap p.2
theorem
Continuous.prod_mapL
(π : Type u_1)
[NontriviallyNormedField π]
{Mβ : Type u_5}
{Mβ : Type u_6}
{Mβ : Type u_7}
{Mβ : Type u_8}
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
{X : Type u_9}
[TopologicalSpace X]
{f : X β Mβ βL[π] Mβ}
{g : X β Mβ βL[π] Mβ}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : X) => (f x).prodMap (g x)
theorem
Continuous.prod_map_equivL
(π : Type u_1)
[NontriviallyNormedField π]
{Mβ : Type u_5}
{Mβ : Type u_6}
{Mβ : Type u_7}
{Mβ : Type u_8}
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
{X : Type u_9}
[TopologicalSpace X]
{f : X β Mβ βL[π] Mβ}
{g : X β Mβ βL[π] Mβ}
(hf : Continuous fun (x : X) => β(f x))
(hg : Continuous fun (x : X) => β(g x))
:
Continuous fun (x : X) => β((f x).prod (g x))
theorem
ContinuousOn.prod_mapL
(π : Type u_1)
[NontriviallyNormedField π]
{Mβ : Type u_5}
{Mβ : Type u_6}
{Mβ : Type u_7}
{Mβ : Type u_8}
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
{X : Type u_9}
[TopologicalSpace X]
{f : X β Mβ βL[π] Mβ}
{g : X β Mβ βL[π] Mβ}
{s : Set X}
(hf : ContinuousOn f s)
(hg : ContinuousOn g s)
:
ContinuousOn (fun (x : X) => (f x).prodMap (g x)) s
theorem
ContinuousOn.prod_map_equivL
(π : Type u_1)
[NontriviallyNormedField π]
{Mβ : Type u_5}
{Mβ : Type u_6}
{Mβ : Type u_7}
{Mβ : Type u_8}
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
[SeminormedAddCommGroup Mβ]
[NormedSpace π Mβ]
{X : Type u_9}
[TopologicalSpace X]
{f : X β Mβ βL[π] Mβ}
{g : X β Mβ βL[π] Mβ}
{s : Set X}
(hf : ContinuousOn (fun (x : X) => β(f x)) s)
(hg : ContinuousOn (fun (x : X) => β(g x)) s)
:
ContinuousOn (fun (x : X) => β((f x).prod (g x))) s
@[simp]
theorem
ContinuousLinearMap.norm_fst
(π : Type u_1)
(E : Type u_2)
(F : Type u_3)
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[SeminormedAddCommGroup F]
[NormedSpace π F]
[Nontrivial E]
:
βContinuousLinearMap.fst π E Fβ = 1
The operator norm of the first projection E Γ F β E
is exactly 1 if E
is nontrivial.
@[simp]
theorem
ContinuousLinearMap.norm_snd
(π : Type u_1)
(E : Type u_2)
(F : Type u_3)
[NontriviallyNormedField π]
[SeminormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
[Nontrivial F]
:
βContinuousLinearMap.snd π E Fβ = 1
The operator norm of the second projection E Γ F β F
is exactly 1 if F
is nontrivial.