The group of units of a complete normed ring #
This file contains the basic theory for the group of units (invertible elements) of a complete normed ring (Banach algebras being a notable special case).
Main results #
The constructions Units.add
and Units.ofNearby
(based on Units.oneSub
defined elsewhere)
state, in varying forms, that perturbations of a unit are units. They are not stated
in their optimal form; more precise versions would use the spectral radius.
The first main result is Units.isOpen
: the group of units of a normed ring with summable
geometric series is an open subset of the ring.
The function Ring.inverse
(defined elsewhere), for a ring R
, sends a : R
to a⁻¹
if a
is a
unit and 0
if not. The other major results of this file (notably NormedRing.inverse_add
,
NormedRing.inverse_add_norm
and NormedRing.inverse_add_norm_diff_nth_order
) cover the asymptotic
properties of Ring.inverse (x + t)
as t → 0
.
In a normed ring with summable geometric series, a perturbation of a unit x
by an
element t
of distance less than ‖x⁻¹‖⁻¹
from x
is a unit.
Here we construct its Units
structure.
Equations
Instances For
In a normed ring with summable geometric series, an element y
of distance less
than ‖x⁻¹‖⁻¹
from x
is a unit. Here we construct its Units
structure.
Instances For
The group of units of a normed ring with summable geometric series is an open subset of the ring.
The nonunits
in a normed ring with summable geometric series are contained in the
complement of the ball of radius 1
centered at 1 : R
.
The formula Ring.inverse (x + t) = Ring.inverse (1 + x⁻¹ * t) * x⁻¹
holds for t
sufficiently
small.
The formula
Ring.inverse (x + t) = (∑ i ∈ Finset.range n, (- x⁻¹ * t) ^ i) * x⁻¹ + (- x⁻¹ * t) ^ n * Ring.inverse (x + t)
holds for t
sufficiently small.
The function fun t ↦ inverse (x + t)
is O(1) as t → 0
.
The function
fun t ↦ Ring.inverse (x + t) - (∑ i ∈ Finset.range n, (- x⁻¹ * t) ^ i) * x⁻¹
is O(t ^ n)
as t → 0
.
The function fun t ↦ Ring.inverse (x + t) - x⁻¹
is O(t)
as t → 0
.
The function fun t ↦ Ring.inverse (x + t) - x⁻¹ + x⁻¹ * t * x⁻¹
is O(t ^ 2)
as t → 0
.
The function Ring.inverse
is continuous at each unit of R
.
In a normed ring with summable geometric series, the coercion from Rˣ
(equipped with the
induced topology from the embedding in R × R
) to R
is an open embedding.
Alias of Units.isOpenEmbedding_val
.
In a normed ring with summable geometric series, the coercion from Rˣ
(equipped with the
induced topology from the embedding in R × R
) to R
is an open embedding.
In a normed ring with summable geometric series, the coercion from Rˣ
(equipped with the
induced topology from the embedding in R × R
) to R
is an open map.
An ideal which contains an element within 1
of 1 : R
is the unit ideal.
The Ideal.closure
of a proper ideal in a normed ring with summable
geometric series is proper.
The Ideal.closure
of a maximal ideal in a normed ring with summable
geometric series is the ideal itself.
Maximal ideals in normed rings with summable geometric series are closed.
Equations
- ⋯ = ⋯