Normed lattice ordered groups #
Motivated by the theory of Banach Lattices, we then define NormedLatticeAddCommGroup
as a
lattice with a covariant normed group addition satisfying the solid axiom.
Main statements #
We show that a normed lattice ordered group is a topological lattice with respect to the norm topology.
References #
- [Meyer-Nieberg, Banach lattices][MeyerNieberg1991]
Tags #
normed, lattice, ordered, group
Normed lattice ordered groups #
Motivated by the theory of Banach Lattices, this section introduces normed lattice ordered groups.
Let α
be an AddCommGroup
with a Lattice
structure. A norm on α
is solid if, for a
and b
in α
, with absolute values |a|
and |b|
respectively, |a| ≤ |b|
implies ‖a‖ ≤ ‖b‖
.
Instances
If α
has a solid norm, then the balls centered at the origin of α
are solid sets.
Let α
be a normed commutative group equipped with a partial order covariant with addition, with
respect which α
forms a lattice. Suppose that α
is solid, that is to say, for a
and b
in
α
, with absolute values |a|
and |b|
respectively, |a| ≤ |b|
implies ‖a‖ ≤ ‖b‖
. Then α
is
said to be a normed lattice ordered group.
Instances
A normed lattice ordered group is an ordered additive commutative group
Equations
- NormedLatticeAddCommGroup.toOrderedAddCommGroup = OrderedAddCommGroup.mk ⋯
Let α
be a normed lattice ordered group, then the order dual is also a
normed lattice ordered group.
Equations
- OrderDual.instNormedLatticeAddCommGroup = NormedLatticeAddCommGroup.mk ⋯
Let α
be a normed lattice ordered group. Then the infimum is jointly continuous.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Let α
be a normed lattice ordered group. Then α
is a topological lattice in the norm topology.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯