Extension of continuous linear maps on Banach spaces #
In this file we provide two different ways to extend a continuous linear map defined on a dense subspace to the entire Banach space.
ContinuousLinearMap.extend: Extend from a dense subspace usingIsUniformInducingContinuousLinearMap.extendOfNorm: Extend from a continuous linear map that is a dense map into the domain together with a norm estimate.
Extension of a continuous linear map f : E โSL[ฯโโ] F, with E a normed space and F a
complete normed space, along a uniform and dense embedding e : E โL[๐] Eโ.
Equations
- f.extend e = if h : DenseRange โe โง IsUniformInducing โe then have cont := โฏ; have eq := โฏ; { toFun := โฏ.extend โf, map_add' := โฏ, map_smul' := โฏ, cont := cont } else 0
Instances For
If a dense embedding e : E โL[๐] G expands the norm by a constant factor Nโปยน, then the
norm of the extension of f along e is bounded by N * โfโ.
Composition of a semilinear map f with the left inverse of a linear map g as a continuous
linear map provided that the norm estimate โf xโ โค C * โg xโ holds for all x : E.
Equations
- f.compLeftInverse g = if h : โ (C : โ), โ (x : E), โf xโ โค C * โg xโ then ((LinearMap.ker g).liftQ f โฏ โโโ โg.quotKerEquivRange.symm).mkContinuousOfExistsBound โฏ else 0
Instances For
Extension of a linear map f : E โโโ[ฯโโ] F to a continuous linear map Eโ โSL[ฯโโ] F,
where E is a normed space and F a complete normed space, using a dense map e : E โL[๐] Eโ
together with a bound โf xโ โค C * โe xโ for all x : E.
Equations
- f.extendOfNorm e = (f.compLeftInverse e).extend (LinearMap.range e).subtypeL