Documentation

Mathlib.Analysis.Normed.Operator.Extend

Extension of continuous linear maps on Banach spaces #

In this file we provide two different ways to extend a continuous linear map defined on a dense subspace to the entire Banach space.

noncomputable def ContinuousLinearMap.extend {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} (f : E โ†’SL[ฯƒโ‚โ‚‚] F) [CompleteSpace F] (e : E โ†’L[๐•œ] Eโ‚—) :
Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F

Extension of a continuous linear map f : E โ†’SL[ฯƒโ‚โ‚‚] F, with E a normed space and F a complete normed space, along a uniform and dense embedding e : E โ†’L[๐•œ] Eโ‚—.

Equations
Instances For
    @[simp]
    theorem ContinuousLinearMap.extend_eq {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} (f : E โ†’SL[ฯƒโ‚โ‚‚] F) [CompleteSpace F] {e : E โ†’L[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) (x : E) :
    (f.extend e) (e x) = f x
    theorem ContinuousLinearMap.extend_unique {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} (f : E โ†’SL[ฯƒโ‚โ‚‚] F) [CompleteSpace F] {e : E โ†’L[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) (g : Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F) (H : g.comp e = f) :
    f.extend e = g
    @[simp]
    theorem ContinuousLinearMap.extend_zero {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [CompleteSpace F] {e : E โ†’L[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) :
    extend 0 e = 0
    theorem ContinuousLinearMap.opNorm_extend_le {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NontriviallyNormedField ๐•œ] [NontriviallyNormedField ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [NormedAddCommGroup E] [NormedAddCommGroup Eโ‚—] [NormedAddCommGroup F] [NormedSpace ๐•œ E] [NormedSpace ๐•œ Eโ‚—] [NormedSpace ๐•œโ‚‚ F] [CompleteSpace F] (f : E โ†’SL[ฯƒโ‚โ‚‚] F) {e : E โ†’L[๐•œ] Eโ‚—} {N : NNReal} [RingHomIsometric ฯƒโ‚โ‚‚] (h_dense : DenseRange โ‡‘e) (h_e : โˆ€ (x : E), โ€–xโ€– โ‰ค โ†‘N * โ€–e xโ€–) :

    If a dense embedding e : E โ†’L[๐•œ] G expands the norm by a constant factor Nโปยน, then the norm of the extension of f along e is bounded by N * โ€–fโ€–.

    noncomputable def LinearMap.compLeftInverse {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [DivisionRing ๐•œ] [DivisionRing ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [AddCommGroup E] [NormedAddCommGroup F] [SeminormedAddCommGroup Eโ‚—] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] (f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F) (g : E โ†’โ‚—[๐•œ] Eโ‚—) :
    โ†ฅ(range g) โ†’SL[ฯƒโ‚โ‚‚] F

    Composition of a semilinear map f with the left inverse of a linear map g as a continuous linear map provided that the norm estimate โ€–f xโ€– โ‰ค C * โ€–g xโ€– holds for all x : E.

    Equations
    Instances For
      theorem LinearMap.compLeftInverse_apply_of_bdd {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [DivisionRing ๐•œ] [DivisionRing ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [AddCommGroup E] [NormedAddCommGroup F] [SeminormedAddCommGroup Eโ‚—] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] (f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F) (g : E โ†’โ‚—[๐•œ] Eโ‚—) (h_norm : โˆƒ (C : โ„), โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–g xโ€–) (x : E) (y : Eโ‚—) (hx : g x = y) :
      (f.compLeftInverse g) โŸจy, โ‹ฏโŸฉ = f x
      noncomputable def LinearMap.extendOfNorm {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NormedDivisionRing ๐•œ] [NormedDivisionRing ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [AddCommGroup E] [SeminormedAddCommGroup Eโ‚—] [NormedAddCommGroup F] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [IsBoundedSMul ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [IsBoundedSMul ๐•œ Eโ‚—] [CompleteSpace F] (f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F) (e : E โ†’โ‚—[๐•œ] Eโ‚—) :
      Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F

      Extension of a linear map f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F to a continuous linear map Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F, where E is a normed space and F a complete normed space, using a dense map e : E โ†’L[๐•œ] Eโ‚— together with a bound โ€–f xโ€– โ‰ค C * โ€–e xโ€– for all x : E.

      Equations
      Instances For
        theorem LinearMap.extendOfNorm_eq {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NormedDivisionRing ๐•œ] [NormedDivisionRing ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [AddCommGroup E] [SeminormedAddCommGroup Eโ‚—] [NormedAddCommGroup F] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [IsBoundedSMul ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [IsBoundedSMul ๐•œ Eโ‚—] [CompleteSpace F] {f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F} {e : E โ†’โ‚—[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) (h_norm : โˆƒ (C : โ„), โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–e xโ€–) (x : E) :
        (f.extendOfNorm e) (e x) = f x
        theorem LinearMap.norm_extendOfNorm_apply_le {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NormedDivisionRing ๐•œ] [NormedDivisionRing ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [AddCommGroup E] [SeminormedAddCommGroup Eโ‚—] [NormedAddCommGroup F] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [IsBoundedSMul ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [IsBoundedSMul ๐•œ Eโ‚—] [CompleteSpace F] {f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F} {e : E โ†’โ‚—[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) (C : โ„) (h_norm : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–e xโ€–) (x : Eโ‚—) :
        theorem LinearMap.extendOfNorm_unique {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NormedDivisionRing ๐•œ] [NormedDivisionRing ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [AddCommGroup E] [SeminormedAddCommGroup Eโ‚—] [NormedAddCommGroup F] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [IsBoundedSMul ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [IsBoundedSMul ๐•œ Eโ‚—] [CompleteSpace F] {f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F} {e : E โ†’โ‚—[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) (C : โ„) (h_norm : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–e xโ€–) (g : Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F) (H : โ†‘g โˆ˜โ‚›โ‚— e = f) :
        theorem LinearMap.opNorm_extendOfNorm_le {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NontriviallyNormedField ๐•œ] [NontriviallyNormedField ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [NormedAddCommGroup F] [SeminormedAddCommGroup Eโ‚—] [NormedSpace ๐•œโ‚‚ F] [NormedSpace ๐•œ Eโ‚—] [AddCommGroup E] [Module ๐•œ E] [CompleteSpace F] {f : E โ†’โ‚›โ‚—[ฯƒโ‚โ‚‚] F} {e : E โ†’โ‚—[๐•œ] Eโ‚—} (h_dense : DenseRange โ‡‘e) {C : โ„} (hC : 0 โ‰ค C) (h_norm : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–e xโ€–) :